Подпишись и читай
самые интересные
статьи первым!

Антропогенные факторы их влияние на биосферу. Антропогенное воздействие на биосферу

Точка принадлежит прямой, если её проекции лежат на одноимённых проекциях этой прямой (рис. 21а).

Точка принадлежит плоскости, если она лежит на прямой, лежащей в этой плоскости (рис.21б).

Прямая принадлежит плоскости, если она проходит через две точки, лежащие в этой плоскости (рис.21в).

Прямая параллельна плоскости, если она параллельна любой прямой, лежащей в этой плоскости. На рисунке 22 изображена прямая t, параллельная прямой b, принадлежащей плоскости Σ: t // b Î Σ (aÇ b).


Рисунок 22

Через любую точку пространства можно провести бесконечное множество прямых, параллельных данной плоскости.

Это задача на определение общей точки прямой и плоскости. Её называют также точкой встречи. Рассмотрим пересечение прямой с плоскостью частного положения.

Плоскость Σ задана треугольником АВС и является горизонтально проецирующей плоскостью. Точка встречи прямой k с плоскостью Σ определяется по горизонтальной проекции. Фронтальная проекция точки К достраивается с помощью линии связи. Символическая запись будет выглядеть следующим образом: k Ç Σ (ABC) = K.

Видимость прямой относительно плоскости определяется при помощи фронтально-конкурирующих точек 1 и 2.


Рисунок 23

Пересечение прямой с плоскостью общего положения изображено на рисунке 24. В этом случае нужно заключить прямую в проецирующую плоскость.

t Î Σ ^ П 2 - прямая t принадлежит плоскости Σ, которая перпендикулярна горизонтальной плоскости проекций. Линия пересечения этой плоскости с данной - линия (1, 2). Затем находится точка пересечения этой линии с прямой t , которая и будет являться точкой встречи прямой и плоскости. Видимость прямой относительно плоскости определяется при помощи конкурирующих точек. Возьмем горизонтально конкурирующие точки 3 и 4. Так как точка 3, принадлежащая прямой, оказалась ниже чем точка 4, следовательно, прямая на горизонтальной плоскости справа от точки пересечения невидима. Затем берем фронтально конкурирующие точки 1 и 5. Точка 1, принадлежащая плоскости, лежит ближе, следовательно, прямая находится за плоскостью, и она на фронтальной проекции невидима от точки 1 до точки К.


Рисунок 24

К особым прямым, принадлежащим плоскости, относятся горизонталь, фронталь и профильная прямая. Построение этих прямых используется при решении многих задач по начертательной геометрии. Их изображение дано на рисунке 25. Причём на горизонтальной плоскости горизонталь имеет натуральную величину, на фронтальной плоскости - фронталь и на профильной плоскости - профильная прямая.


Рисунок 25

1. Сформулируйте условия принадлежности точки плоскости и прямой плоскости.

2. Как построить прямую параллельную заданной плоскости?

3. Вспомните этапы решения задачи на определение точки пересечения прямой и плоскости.

4. Какие точки называются конкурирующими?

5. Как провести в плоскости горизонталь и фронталь?

6. Какие еще особые прямые плоскости вы знаете?

Чтобы прямая лежала в данной плоскости, необходимо, чтобы эта прямая имела с плоскостью две общие точки, которые и определят эту прямую.
Возьмем на данных прямых две произвольно расположенные точки Е и F (Е 1 Е 2 и F 1 F 2 ) и проведем через них прямую k (k 1 и k 2 ). Эта прямая будет расположена в данной плоскости, так как она имеет с ней две общие точки (фиг.232,б).
Изображение на комплексном чертеже прямой, расположенной в плоскости, заданной следами:
а) Возьмем на следах k и L произвольно точки М (М 1 М 2 ) и N (N 1 N 2 ) как следы прямой (фиг.233,а).
б) Проведем через одноименные фронтальные (М 2 и N 2 ) и горизонтальные (М 1 и N 1 ) проекции точек М и N прямые (фиг.233,б).
Прямая MN будет расположена в плоскости а как имеющая с ней две общие точки.
Отсюда следует: для того чтобы прямая принадлежала плоскости, надо, чтобы следы прямой лежали на одноименных следах этой плоскости.

Прямая лежит в плоскости, если имеет с ней одну общую точку и параллельна прямой, лежащей в плоскости. Пусть задана плоскость (фиг.234,а) прямой АВ (А 1 В 1 и A 2 В 2 ) и точкой С (C 1 C 2 ).
Требуется в заданной плоскости провести прямую через заданную точку С .
Проведем через точку С (С 1 С 2 ) прямую параллельно прямой АВ (А 1 В 1 и А 2 В 2 ); эта прямая будет расположена в данной плоскости, так как она имеет с плоскостью общую точку и параллельна прямой, лежащей в данной плоскости (фиг.234,б).
Изображение на комплексном чертеже прямой , расположенной в плоскости и параллельной одному из следов плоскости. Для проведения прямой в заданной следами плоскости а общего положения (прямая должна быть параллельна горизонтальному следу k данной плоскости), возьмем на следе L произвольную точку N (N 1 N 2 ) как точку, лежащую в данной плоскости а (фиг.235,а).
След k принимаем за прямую, лежащую в плоскости П 1 Проведем прямую через точку N 1 параллельно прямой k 1 получим горизонтальную проекцию h 1 прямой h . Фронтальная проекция h 2 прямой h пройдет через точку N 2 и расположится параллельно оси х 12 как прямая, параллельная плоскости П 1 (фиг.235,б).
Прямая h будет принадлежать плоскости а , как имеющая с ней общую точку (след N ) и параллельная прямой (следу к ), лежащей в данной плоскости.
Аналогичное построение будет справедливо и для случая, когда требуется провести прямую в заданной следами плоскости общего положения параллельно фронтальному следу L (фиг.235,в и г).
Прямая h , лежащая в плоскости а , параллельная горизонтальной плоскости проекций П 1 , называется горизонталью данной плоскости (фиг.235,а и б).
Прямая f , лежащая в плоскости а , параллельная фронтальной плоскости проекций П 2 , называется фронталью данной плоскости (фиг.235,в и г).
Отсюда следует, что через всякую точку, лежащую в данной плоскости, можно провести одну горизонталь и одну фронталь. Разобрав различные изображения прямой в плоскости, можно на комплексном чертеже решить обратную задачу, т. е., имея проекции прямой, провести через нее соответствующую плоскость.

Пример 1. Через данный отрезок АВ (А 1 В 1 А 2 В 2 ) провести плоскость общего положения и показать проекции следов этой плоскости (фиг. 236,а).
Зная, что следы прямой должны лежать на одноименных следах плоскости, сначала находим следы прямой, затем выбираем в произвольном месте на оси х 12 точку F 12 схода следов (фиг. 236,б) и, наконец, проводим следы плоскости общего положения (фиг. 236,в).

Пример 2. Через данный отрезок АВ (А 1 В 1 , А 2 В 2 ) провести горизонтально - проектирующую плоскость и показать ее проекцию.
Так как в этом случае горизонтальная проекция прямой должна сливаться с горизонтальной проекцией плоскости, проводим горизонтальную проекцию σ 1 плоскости через горизонтальную проекцию прямой (фиг. 237).
Точка в плоскости. В случае изображения на комплексном чертеже проекций точки, лежащей в данной плоскости, сначала проводят в плоскости вспомогательную прямую, а затем на ней изображают точку.
а) Построить проекции произвольной точки A , принадлежащей плоскости а , заданной следами (фиг.238,а).
Воспользуемся фронталью данной плоскости а как прямой, лежащей в плоскости. Спроектируем одну из фронталей плоскости а , например f (f 1 , f 2 ) (фиг.238,б).
Затем на фронтали проектируем произвольную точку, которую принимаем за заданную точку А (А 1 A 2 ) (фиг.238,в).
Так как обе проекции А 1 и А 2 точки А лежат на проекциях фронтали f плоскости а , то, следовательно, точка А лежит в заданной плоскости а .
Таким же способом можно выполнить построение, воспользовавшись горизонталью h (фиг.238,г)
б) Пусть плоскость задана двумя пересекающимися прямыми АВ (A 1 B 1 , A 2 A 2 ) и ВС (B 1 C 1 , В 2 С 2 ), требуется найти проекции D 1 и D 2 точки D лежащей в заданной плоскости вне этих прямых (фиг.239,а). Зная, что проекции точки должны лежать на проекциях прямой, принадлежащей данной плоскости, проводим вспомогательную прямую EF (E 1 F 1 , E 2 F 2 ) так, чтобы она лежала в данной плоскости (фиг.239,б). Затем на прямой EF (фиг.239,в) проектируем точку D (D 1 D 2 ).


Так как точка D (D 1 D 2 ) лежит на прямой EF (E 1 F 1 , E 2 F 2 ), находящейся в заданной плоскости, следовательно, она принадлежит заданной плоскости.
в) Пусть плоскость σ задана фронтальной проекцией σ 2 . Требуется построить проекции произвольной точки А , принадлежащей данной плоскости.
Так как плоскость σ - фронтально - проектирующая, то по свойству проектирующих плоскостей фронтальная проекция точки, лежащей в этой плоскости, должна сливаться с фронтальной проекцией данной плоскости.
Спроектируем произвольную точку А так, чтобы фронтальная проекция A 2 точки лежала на проекции σ 2 , это и определит, что точка A (A 1 A 2 ) лежит в заданной плоскости (фиг.240).
Такое построение будет справедливо и для остальных проектирующих плоскостей.
Рассмотрим несколько примеров.
Пример I . Дан треугольник AВС (А 1 В 1 С 1 , A 2 B 2 C 2 ) и произвольно расположенная точка D (фиг.241,а); требуется определить, лежит ли точка D (D 1 D 2 ) в плоскости данного треугольника? Порядок проверки указан цифрами на (фиг.241,б).
1 - проводим через точки С 2 и D 2 прямую, получаем точку K 2 ;
2 - проводим вертикальную линию связи, получаем точку К 1 ;
3 - проводим через точки С 1 и К 1 прямую; в данном случае она прошла через точку Ьъ следовательно, точка D (D 1 D 2 ) лежит на прямой СК (С 1 К 1 , С 2 K 2 ), так как ее проекции лежат на проекциях этой прямой и на одной линии связи; прямая СК принадлежит плоскости треугольника ABC (A 1 B 1 C 1 , А 2 В 2 С 2 ), так как имеет с ней две общие точки; следовательно, точка D принадлежит плоскости треугольника.
Пример II . Дан треугольник ABC и расположенная произвольно прямая EF (Е 1 F 1 E 2 F 2 ), требуется определить, лежит ли прямая в плоскости данного треугольника (фиг.242,а)?
Порядок проверки указан цифрами на (фиг.242,б):
1 - продолжаем отрезок E 2 F 2 ; в пересечении с прямыми В 2 А 2 и А 2 С 2 получаем точки Р 2 и Т 2 ;
2 - проводим через точки Р 2 и Т 2 вертикальные линии связи до пересечения с прямыми В 1 А 1 и А 1 С 1 получаем точки Р 1 и Т 1 ;
3 - проведем через точки Р 1 и T 1 прямую; в данном случае прямая сливается с отрезком E 1 F 1 следовательно, прямая РТ принадлежит плоскости треугольника, так как одноименные проекции точек Р и Т лежат на одноименных проекциях прямых ВА и АС , принадлежащих треугольнику, и на одной линии связи; следовательно, прямая EF принадлежит плоскости данного треугольника.

Признаки принадлежности хорошо известны из курса планиметрии. Наша задача рассмотреть их применительно к проекциям геометрических объектов.

Точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости.

Принадлежность прямой плоскости определяется по одному из двух признаков:

а) прямая проходит через две точки, лежащие в этой плоскости;

б) прямая проходит через точку и параллельна прямой, лежащим в этой плоскости.

Используя эти свойства, решим в качестве примера задачу. Пусть плоскость задана треугольником АВС . Требуется построить недостающую проекцию D 1 точки D , принадлежащей этой плоскости. Последовательность построений следующая (рис. 2.5).

Через точку D 2 проводим проекцию прямой d , лежащей в плоскости DАВС , пересекающую одну из сторон треугольника и точку А 2 . Тогда точка 1 2 принадлежит прямым А 2 D 2 и C 2 В 2 . Следовательно, можно получить ее горизонтальную проекцию 1 1 на C 1 В 1 по линии связи. Соединив точки 1 1 и А 1 , получаем горизонтальную проекцию d 1 . Ясно, что точка D 1 принадлежит ей и лежит на линии проекционной связи с точкой D 2 .

Достаточно просто решаются задачи на определение принадлежности точки или прямой плоскости. На рис. 2.6 показан ход решения таких задач. Для наглядности изложения задачи плоскость задаем треугольником.

Рис. 2.6. Задачи на определение принадлежности точки и прямой плоскости.

Для того, чтобы определить принадлежит ли точка Е плоскости DАВС , проведем через ее фронтальную проекцию Е 2 прямую а 2 . Считая, что прямая а принадлежит плоскости DАВС , построим ее горизонтальную проекцию а 1 по точкам пересечения 1 и 2. Как видим (рис. 2.6, а), прямая а 1 не проходит через точку Е 1 . Следовательно, точка Е ÏDАВС .

В задаче на принадлежность прямой в плоскости треугольника АВС (рис. 2.6, б), достаточно по одной из проекций прямой в 2 построить другую в 1 * считая, что вÌDАВС . Как видим, в 1 * и в 1 не совпадают. Следовательно, прямая в Ë DАВС .

Линии уровня в плоскости

Определение линий уровня было дано ранее. Линии уровня, принадлежащие данной плоскости, называются главными . Эти линии (прямые) играют существенную роль при решении ряда задач начертательной геометрии.

Рассмотрим построение линий уровня в плоскости, заданной треугольником (рис. 2.7).

Рис. 2.7. Построение главных линий плоскости, заданной треугольником

Горизонталь плоскости DАВС начинаем с вычерчивания ее фронтальной проекции h 2 , которая, как известно, параллельна оси ОХ . Поскольку эта горизонталь принадлежит данной плоскости, то она проходит через две точки плоскости DАВС , а именно, точки А и 1. Имея их фронтальные проекции А 2 и 1 2 , по линии связи получим горизонтальные проекции (А 1 уже есть) 1 1 . Соединив точки А 1 и 1 1 , имеем горизонтальную проекцию h 1 горизонтали плоскости DАВС . Профильная проекция h 3 горизонтали плоскости DАВС будет параллельна оси ОХ по определению.

Фронталь плоскости DАВС строится аналогично (рис. 2.7) с той лишь разницей, что ее вычерчивание начинается с горизонтальной проекции f 1 , так как известно, что она параллельна оси ОХ. Профильная проекция f 3 фронтали должна быть параллельна оси ОZ и пройти через проекции С 3 , 2 3 тех же точек С и 2.

Профильная линия плоскости DАВС имеет горизонтальную р 1 и фронтальную р 2 проекции, параллельные осям OY и OZ , а профильную проекцию р 3 можно получить по фронтальной, используя точки пересечения В и 3 с D АВС .



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения