Подпишись и читай
самые интересные
статьи первым!

Синхрофазотрон - что это: определение, принцип действия, применение. Синхрофазотрон: что такое, принцип действия и описание Что это - синхрофазотрон? Для чего он нужен

Ты - не раб!
Закрытый образовательный курс для детей элиты: "Истинное обустройство мира".
http://noslave.org

Материал из Википедии - свободной энциклопедии

Синхрофазотро́н (от синхро низация + фаза + элек трон) - резонансный циклический ускоритель с неизменной в процессе ускорения длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите , изменяется как ведущее магнитное поле , так и частота ускоряющего электрического поля. Последнее необходимо, чтобы пучок приходил в ускоряющую секцию всегда в фазе с высокочастотным электрическим полем. В том случае, если частицы ультрарелятивистские, частота обращения, при фиксированной длине орбиты, не меняется с ростом энергии, и частота ВЧ-генератора также должна оставаться постоянной. Такой ускоритель уже называется синхротроном .

Напишите отзыв о статье "Синхрофазотрон"

Примечания

См. также

Отрывок, характеризующий Синхрофазотрон

Мы вышли из дома вместе, как будто я тоже собиралась идти с ней на рынок, а за первым же поворотом дружно расстались, и каждая уже пошла своей дорогой и по своим делам…
Дом, в котором всё ещё жил отец маленькой Вэсты был в первом у нас строящемся «новом районе» (так называли первые многоэтажки) и находился от нас примерно в сорока минутах быстрой ходьбы. Ходить я очень любила всегда, и это не доставляло мне никаких неудобств. Только я очень не любила сам этот новый район, потому что дома в нём строились, как спичечные коробки – все одинаковые и безликие. И так как место это только-только ещё начинало застраиваться, то в нём не было ни одного дерева или любой какой-нибудь «зелени», и оно было похожим на каменно-асфальтовый макет какого-то уродливого, ненастоящего городка. Всё было холодным и бездушным, и чувствовала я себя там всегда очень плохо – казалось, там мне просто не было чем дышать...
И ещё, найти номера домов, даже при самом большом желании, там было почти что невозможно. Как, например, в тот момент я стояла между домами № 2 и № 26, и никак не могла понять, как же такое может быть?!. И гадала, где же мой «пропавший» дом № 12?.. В этом не было никакой логики, и я никак не могла понять, как люди в таком хаосе могут жить?
Наконец-то с чужой помощью мне удалось каким-то образом найти нужный дом, и я уже стояла у закрытой двери, гадая, как же встретит меня этот совершенно мне незнакомый человек?..
Я встречала таким же образом много чужих, неизвестных мне людей, и это всегда вначале требовало большого нервного напряжения. Я никогда не чувствовала себя комфортно, врываясь в чью то частную жизнь, поэтому, каждый такой «поход» всегда казался мне чуточку сумасшедшим. И ещё я прекрасно понимала, как дико это должно было звучать для тех, кто буквально только что потерял родного им человека, а какая-то маленькая девочка вдруг вторгалась в их жизнь, и заявляла, что может помочь им поговорить с умершей женой, сестрой, сыном, матерью, отцом… Согласитесь – это должно было звучать для них абсолютно и полностью ненормально! И, если честно, я до сих пор не могу понять, почему эти люди слушали меня вообще?!.

Парламентариям Великобритании понадобилось всего 15 минут, чтобы решить вопрос о государственной инвестиции размером 1 млрд. фунтов в строительство синхрофазотрона. После этого — они на протяжении одного часа бурно обсуждали стоимость кофе, ни много ни мало, в парламентском буфете. И таки решили: снизили цену на 15%.

Казалось бы, задачи-то по сложности вообще не сопоставимы, и всё по логике вещей должно было случиться с точностью до наоборот. Час — на науку, 15 минут — на кофе. Ан нет! Как выяснилось позже, большинство достопочтенных политиков оперативно дали своё сокровенное «за», совершенно не имея понятия, что такое «синхрофазотрон».

Давайте, дорогой читатель, вместе с вами восполним этот пробел знаний и не будем уподобляться научной недальновидности некоторых товарищей.

Что такое синхрофазотрон?

Синхрофазотрон — электронная установка для научных исследований — циклический ускоритель элементарных частиц (нейтронов, протонов, электронов и др). Имеет форму огромного кольца, весом более 36 тыс. тонн. Его сверхмощные магниты и ускоряющие трубки наделяют микроскопические частицы колоссальной энергией направленного движения. В недрах резонатора фазотрона, на глубине 14,5метра, происходят, по истине, фантастические преобразования на физическом уровне: например, крохотный протон получает 20 млн. электрон-вольт, а тяжёлый ион — 5 млн. эВ. И это лишь скромная толика всех возможностей!

Именно, благодаря уникальным свойствам циклического ускорителя, учённым удалось познать самые сокровенные тайны мироздания: изучить строение ничтожно малых частиц и физико-химические процессы, происходящие внутри их оболочек; воочию наблюдать реакцию синтеза; открывать природу доселе неизведанных микроскопических объектов.

Фазотрон ознаменовал новую эру научных изысканий — территорию исследований, где был бессилен микроскоп, о которой с большой осторожностью говорили даже фантасты-новаторы (их прозорливый творческий полёт не смог предугадать свершённых открытий!).

История синхрофазотрона

Изначально, ускорители были линейными, то есть не имели циклической структуры. Но вскоре физикам пришлось от них отказаться. Требования к величинам энергии увеличивались — её нужно было больше. А линейная конструкция не справлялась: теоретические расчёты показывали, что для этих значений, она должна быть неимоверной длины.

  • В 1929г. американец Э.Лоуренс делает попытки решить эту проблему и изобретает циклотрон, прообраз современного фазотрона. Испытания проходят успешно. Через десять лет, в 1939г. Лоуренс удостаивается Нобелевской премии.
  • В 1938г. в СССР вопросом создания и усовершенствования ускорителей начинает активно заниматься талантливый физик В.И.Векслер. В феврале 1944г. к нему приходит революционная идея как преодолеть энергетический барьер. Свой метод Векслер называет «автофазировка». Ровно через год, эту же технологию совершенно независимо открывает Э.Макмиллан, учёный из США.
  • В 1949г в Советском Союзе под руководством В.И. Векслера и С.И. Вавилова разворачивается крупномасштабный научный проект — создание синхрофазотрона мощностью 10 млрд. электрон-вольт. На протяжении 8 лет на базе института ядерных исследований в городе Дубно на Украине группа физиков-теоретиков, конструкторов и инженеров кропотливо трудилась над установкой. Поэтому его еще называют Дубнинский синхрофазотрон.

Пуск синхрофазотрона в эксплуатацию состоялся в марте 1957г., за полгода до полёта в космос первого искусственного спутника Земли.

Какие исследования проводятся на синхрофазотроне?

Резонансный циклический ускоритель Векслера породил плеяду выдающихся открытий во многих аспектах фундаментальной физики и, в частности, в некоторых спорных и малоизученных проблемах теории относительности Эйнштейна:

  • поведение кварковой структуры ядер в процессе взаимодействия;
  • образование кумулятивных частиц в результате реакций с участием ядер;
  • изучение свойств ускоренных дейтронов;
  • взаимодействие тяжёлых ионов с мишенями (проверка стойкости микросхем);
  • утилизация Урана-238.

Результаты, полученные по этим направлениям, успешно применяются в строительстве космических кораблей, проектировании атомных электростанций, разработке робототехники и оборудования для работы в экстремальных условиях. Но самое удивительное то, что череда исследований, осуществлённых на синхрофазотроне, всё больше приближает учённых к разгадке великой тайны происхождения Вселенной.

Что такое синхрофазотрон?

Для начала немного углубимся в историю. Потребность в данном устройстве впервые возникла в 1938 году. Группа ученых-физиков Ленинградского ФТИ обратилась к Молотову с заявлением, что СССР нужна исследовательская база для изучения строения атомного ядра. Аргументировали данную просьбу тем, что подобная область изучения играет очень важную роль, а на данный момент Советский Союз несколько отстает от западных коллег. Ведь в Америке на то время уже имелось 5 синхрофазотронов, в СССР же ни одного. Было предложено завершить постройку уже начатого циклотрона, развитие которого приостановилось из-за слабого финансирования и отсутствия компетентных кадров.

В конце концов, было принято решение о строительстве синхрофазотрона, и во главе сего проекта стоял Векслер. Строительство было завершено в 1957 году. Так что же такое синхрофазотрон? Попросту говоря, – это ускоритель частиц. Он предает частицам огромной кинетической энергии. В его основе лежит переменчивое ведущее магнитное поле и изменяемая частота главного поля. Такое сочетание позволяет удерживать частицы на постоянной орбите. Используется это устройство для изучения разнообразнейших свойств частиц и их взаимодействия на высоких энергетических уровнях.

Аппарат имеет очень интригующие габариты: он занимает целый корпус университета, его вес равен 36 тыс. тонн, а диаметр магнитного кольца – 60 м. Довольно внушительные размеры для устройства, основной задачей которого является изучение частиц, размеры которых измеряются в микрометрах.

Принцип работы синхрофазотрона

Очень многие ученые физики пытались разработать устройство, которое давало бы возможность разгонять частицы, предавая им огромной энергии. Именно решением этой проблемы и является синхрофазотрон. Как же он работает и что лежит в основе?

Начало было положено циклотроном. Рассмотрим принцип его действия. Ионы, которые будут ускорять, попадают в вакуум, где находится дуант. В это время на ионы происходит воздействие магнитным полем: они продолжают двигаться по оси, набирая скорость. Преодолев ось и попав в следующий зазор, начинается набор ими скорости. Для большего ускорения требуется постоянный прирост радиуса дуги. При этом время прохождения будет постоянным, не смотря на увеличение расстояния. Из-за роста скорости наблюдается прирост массы ионов.

Такое явление влечет за собой потерю в наборе скорости. Это и есть основной недостаток циклотрона. В синхрофазотроне данная проблема полностью устранена – за счет изменения индукции магнитного поля с привязанной массой и одновременного изменения частоты перезарядки частиц. То есть, энергия частиц наращивается за счет электрического поля, задавая направление за счет наличия магнитного поля.

Синхрофазотрон - циклический ускоритель с постоянной длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите, изменяется как ведущее магнитное поле , так и частота ускоряющего электрического поля . Большинство современных циклических ускорителей являются сильнофокусирующими синхрофазотронами. Для ультрарелятивистских электронов в процессе ускорения частота обращения практически не меняется, и используются синхротроны.

Из истории

Волею судьбы в 1921 году он оказывается беспризорником в Москве и попадает в дом-коммуну в Хамовниках. Окончив в коммуне школу-девятилетку, стал работать на заводе электриком, где получил комсомольскую путевку в институт. В 1931 году окончил экстерном Московский энергетический институт и стал работать в лаборатории рентгеноструктурного анализа Всесоюзного электротехнического института в Лефортове, где занимался постройкой измерительных приборов и изучением методов измерения потоков заряженных частиц.

В 1937 г. Векслер перешел в Физический институт Академии наук СССР имени П.Н. Лебедева (ФИАН), где занялся изучением космических лучей. С их помощью физики изучали превращения химических элементов и изучали процессы ядерных взаимодействий. Векслер участвовал в экспедициях ученых на Эльбрус, а затем, позже, на Памир, где и отлавливались потоки заряженных частиц высокой энергии, которые невозможно было получить в земных лабораториях.

Уже в двадцатых годах у многих ученых-ядерщиков возникала мысль - как хорошо было бы получить частицы Э.Лоуренс таких высоких “космических” энергий в лаборатории с помощью надежных приборов. Теоретически всё было ясно - заряженную частицу должно разгонять электрическое поле. Однако линейные ускорители не позволяли получить частицы больших энергий. В 1929 году американский ученый Э. Лоуренс предложил конструкцию ускорителя, в котором частица движется по спирали, проходя многократно один и тот же промежуток между двумя электродами. Траекторию частицы искривляет и закручивает однородное магнитное поле, направленное перпендикулярно плоскости орбиты. Ускоритель был назван циклотроном. В 1930-1931 годах Лоуренс с сотрудниками построил в Калифорнийском университете (США) первый циклотрон. За это изобретение он в 1939 году был удостоен Нобелевской премии.

С 1938 г. Векслер подключился к созданию циклоторонов в нашей стране. Но и у них оказался предел ускорения частиц. Требовались новые усовершенствования. Работы прервала война, и Векслер во время эвакуации в Казани совместно с другими учёными занимался исследованиями, непосредственно необходимыми фронту. Только в 1943 году Векслеру удалось вернуться к проблемам ускорителей. Трудность заключалась в том, что в соответствии с теорией относительности Эйнштейна с увеличением скорости росла и масса частиц, они отклонялись от круговой траектории и гасились о стенки циклотрона.

В феврале 1944 года В.И. Векслер выдвинул революционную идею, как преодолеть энергетический барьер циклотрона. Он назвал свой метод автофазировкой. Векслер предложил синхронно увеличивать во времени магнитное поле в циклотроне, питая магнит переменным током в фазе с частотой обращения частиц. Тогда окажется, что в среднем частота обращения частиц по окружности автоматически будет поддерживаться равной частоте разгоняющего электрического поля. Такой ускоритель был назван синхрофазотроном.

Через год независимо от Векслера принцип автофазировки открыл американский ученый Э. Макмиллан. Позднее они оба были представлены к присуждению за это Нобелевской премии. Но у нас все работы были засекречены и не были представлены в Нобелевский комитет. А одному Макмиллану премию не дали. Правда, в 1957 году он получил Нобелевскую премию по химии за другую работу.

В 1949 году по инициативе В. И. Векслера и С. И. Вавилова ученые и инженеры начали проектировать первый в нашей стране синхрофазотрон на 10 миллиардов электрон-вольт в Дубне. Пуск его в эксплуатацию состоялся в 1957 году. Векслер был бессменным директором Лаборатории высоких энергий Объединенного института ядерных исследований в Дубне.

Весь мир знает, что в 1957 году СССР запустил первый в мире искусственный спутник Земли. Однако, мало кто знает, что в этом же году Советский Союз начал испытания синхрофазотрона, который является прародителем современного Большого Адронного Коллайдера в Женеве. В статье пойдет речь о том, что такое синхрофазотрон, и как он работает.

Отвечая на вопрос, что такое синхрофазотрон, следует сказать, что это высокотехнологическое и наукоемкое устройство, которое предназначалось для исследования микрокосмоса. В частности, идея синхрофазотрона состояла в следующем: необходимо было с помощью мощных магнитных полей, создаваемых электромагнитами, разогнать до больших скоростей пучок элементарных частиц (протонов), а затем направить этот пучок на находящуюся в покое мишень. От такого столкновения протоны должны будут «разломаться» на части. Недалеко от мишени находится специальный детектор — пузырьковая камера. Этот детектор позволяет по трекам, которые оставляют части протона, исследовать их природу и свойства.

Для чего нужно было строить синхрофазотрон СССР? В этом научном эксперименте, который проходил под категорией «совершенно секретно», советские ученые пытались найти новый источник более дешевой и более эффективной энергии, чем обогащенный уран. Также преследовались и чисто научные цели более глубокого изучения природы ядерных взаимодействий и мира субатомных частиц.

Принцип работы синхрофазотрона

Приведенное выше описание задач, которые стояли перед синхрофазотроном, может многим показаться не слишком сложным для их реализации на практике, но это не так. Несмотря на всю простоту вопроса, что такое синхрофазотрон, чтобы ускорить протоны до необходимых огромных скоростей, нужны электрические напряжения в сотни млрд вольт. Такие напряжения невозможно создать даже в настоящее время. Поэтому было решено распределить во времени вкачиваемую в протоны энергию.

Принцип работы синхрофазотрона заключался в следующем: пучок протонов начинает свое движение по кольцеобразному туннелю, в некотором месте этого туннеля стоят конденсаторы, которые создают скачек напряжения в тот момент, когда пучок протонов пролетает через них. Таким образом, на каждом витке происходит небольшое ускорение протонов. После того, как пучок частиц совершит несколько миллионов оборотов по туннелю синхрофазотрона, протоны достигнут желаемых скоростей, и будут направлены на мишень.

Стоит отметить, что используемые во время ускорения протонов электромагниты выполняли направляющую роль, то есть они определяли траекторию пучка, но не участвовали в его ускорении.

Проблемы, с которыми столкнулись ученые при проведении экспериментов

Чтобы лучше понять, что такое синхрофазотрон, и почему его создание является очень сложным и наукоемким процессом, следует рассмотреть проблемы, возникающие в процессе его работы.

Во-первых, чем больше скорость пучка протонов, тем большей массой они начинают обладать согласно знаменитому закону Эйнштейна. При скоростях близких к световым масса частиц становится настолько большой, что для их удержания на нужной траектории, необходимо иметь мощные электромагниты. Чем больше размер синхрофазотрона, тем большие магниты можно поставить.

Во-вторых, создание синхрофазотрона осложнялось еще и потерями энергии пучком протонов во время их кругового ускорения, причем, чем больше скорость пучка, тем более значительными становятся эти потери. Получается, что для разгона пучка до необходимых гигантских скоростей, необходимо иметь огромные мощности.

Какие результаты удалось получить?

Несомненно, эксперименты на советском синхрофазотроне внесли огромный вклад в развитие современных областей техники. Так, благодаря этим экспериментам ученые СССР смогли улучшить процесс переработки использованного урана-238 и получили некоторые интересные данные, сталкивая ускоренные ионы разных атомов с мишенью.

Результаты экспериментов на синхрофазотроне используются и по сей день в строительстве атомных электростанций, космических ракет и робототехники. Достижения советской научной мысли были использованы при строительстве самого мощного синхрофазотрона современности, которым является Большой Адронный Коллайдер. Сам же советский ускоритель служит науке РФ, находясь в институте ФИАН (Москва), где используется в качестве ускорителя ионов.

Что такое синхрофазотрон: принцип работы и полученные результаты — все о путешествиях на сайт



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения