Подпишись и читай
самые интересные
статьи первым!

Наиболее сильной проникающей способностью обладает. Виды радиоактивных излучений

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Cloudflare Ray ID: 41e7064ef5d56403 Your IP: 5.189.134.229 Performance & security by Cloudflare

20. ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ И ИХ ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ

Ионизацией называется образование положительных и отрицательных ионов и свободных электронов из электрически нейтральных атомов и молекул. Ионизация атмосферы – образование положительных и отрицательных ионов (атмосферных ионов) и свободных электронов в атмосферном воздухе под воздействием солнечной радиации. В результате ионизации атмосферный воздух приобретает электропроводность и особые целебные свойства.

Радиоактивные излучения (альфа-, бета-частицы, нейтроны, гамма-кванты) обладают различной проникающей и ионизирующей способностью. Наименьшей проникающей способностью обладают альфа-частицы (ядра гелия), длина пробега которых в ткани человека составляет доли миллиметра, а в воздухе – несколько сантиметров. Они не могут пройти через лист бумаги, но обладают наибольшей ионизирующей способностью.

Бета-частицы обладают большей проникающей способностью, но ионизирующая способность бета-частиц (электронов, позитронов) в 1000 раз меньше, чем у альфа-частиц, и при пробеге в воздухе на 1 см пути они образуют несколько десятков пар ионов.

Гамма-кванты относятся к электромагнитным излучениям и обладают большой проникающей способностью (в воздухе – до нескольких километров); их ионизирующая способность значительно меньше, чем у альфа– и бета-частиц. Нейтроны (частицы ядра атома) обладают значительной проникающей способностью, что объясняется отсутствием у них заряда. Их ионизирующая способность связана с наведенной радиоактивностью, которая образуется в результате попадания нейтрона в ядро атома вещества: тем самым нарушается его стабильность, образуется радиоактивный изотоп. Ионизирующая способность нейтронов при определенных условиях может быть аналогична альфа-излучению.

Ионизирующие излучения, обладающие большой проникающей способностью, представляют опасность в большей степени при внешнем облучении, а альфа– и бета-излучения – при непосредственном воздействии на ткани организма при попадании внутрь организма с вдыхаемым воздухом, водой, пищей.

При внешнем облучении всего тела или отдельных его участков (местном воздействии) или внутреннем облучении человека или животных в поражающих дозах может развиться заболевание, называемое лучевой болезнью.

В настоящее время лучевое поражение людей может быть связано с нарушением правил и норм радиационной безопасности при выполнении работ с источниками ионизирующих излучений, при авариях на радиационно-опасных объектах, при ядерных взрывах и др.

Известно, что источником радиации являются радиоактивные ядра, способные самопроизвольно распадаться. Само слово «радиоактивный» вызывает страх и неприятие, в то время как оно означает лишь нестабильность отдельных изотопов различных элементов. Отметим, что естественные радиоактивные ядра существовали всегда, до и после появления ядерной энергетики. Любая вещь, любой материальный предмет из тех, которые нас окружают, содержит определенную долю радионуклидов (не имеющих никакого отношения к ядерной отрасли), способных распадаться и испускать ионизирующее излучение - пресловутую радиацию. Установлено, что в более ранние геологические периоды естественный радиационный фон на нашей планете был гораздо выше, чем сейчас.

Известны три основных вида радиации, испускаемой радиоактивными ядрами

  • альфа-излучение
  • Представляет собой поток альфа-частиц, состоящих из двух протонов и двух нейтронов (собственно говоря, это ядра атомов гелия), образовавшихся в результате альфа-распада тяжелых ядер.
  • бета-излучение
  • Это поток электронов или позитронов (бета-частиц), образовавшихся в результате бета-распада радиоактивных ядер.
  • гамма-излучение
  • Гамма-излучение сопровождает альфа- или бета-распад и представляет собой поток гамма-квантов, являясь, по сути, электромагнитным излучением - то есть, оно имеет волновую природу, аналогичную природе света. Отличие в том, что гамма-кванты обладают гораздо большей энергией, чем кванты светового излучения, и поэтому имеют бóльшую проникающую способность.

Проникающая способность радиационного излучения

Самая маленькая проникающая способность у альфа-частиц: пробег в воздухе составляет несколько сантиметров, в биологической ткани - доли миллиметра. Поэтому плотная одежда обеспечивает необходимую и достаточную степень защиты от внешнего альфа-излучения. Бета-частицы (поток электронов) обладают большей проникающей способностью: пробег в воздухе - несколько метров, в биологической ткани - до нескольких сантиметров. Поэтому при работе с источниками жесткого бета-излучения возникает необходимость в использовании дополнительной защиты (защитные экраны, контейнеры). Наконец, наибольшей проникающей способностью обладает гамма-излучение: электромагнитные волны способны проходить тело насквозь. Для источников мощного гамма-излучения требуется более тяжелая защита: свинцовые экраны, толстостенные бетонные конструкции.

Вообще, важно понимать, что источниками радиации являются не только радионуклиды. В частности, проходя ежегодное флюорографическое обследование или делая компьютерную томографию, мы подвергаемся действию рентгеновского излучения, которое (как и гамма-излучение) представляет собой поток квантов. Это означает, что два типа излучения, имея различное происхождение, в равной степени относятся к проникающей радиации. Иными словами, хотя в рентгеновской трубке не используются радионуклиды, она также является источником ионизирующего излучения.

Другим источником радиации, не связанным с естественными и искусственными радионуклидами, является космическое излучение. В открытом космосе это излучение обладает огромной энергией, но, проходя сквозь атмосферу, в значительной степени ослабляется и не оказывает значимого влияния на человека. По мере увеличения высоты возрастает и радиационный фон - поэтому люди, часто совершающие авиаперелеты, получают повышенную дозу радиации; еще большую дозу получают космонавты, выходящие в открытый космос.

Если сопоставить вклад различных источников в дозу, получаемую средним россиянином, то получится следующая картина: около 84,4% дозы он получит от природных источников, 15,3% - от медицинских источников, 0,3% - от техногенных источников (АЭС и других предприятий ядерной отрасли, сюда же включены последствия ядерных взрывов). В структуре природных источников можно выделить радон (50,9% от суммарной дозы), терригенное излучение, обусловленное радионуклидами, находящимися в земле (15,6%), космическое излучение (9,8%), и, наконец, внутреннее облучение за счет радионуклидов, находящихся в теле человека (калий-40, а также радионуклиды, поступающие с водой, воздухом, пищей) - 8,1%. Конечно, эти цифры условны и меняются в зависимости от региона, но общее соотношение всегда остается постоянным.

Радиоактивные излучения (альфа-,бета-частицы, нейтроны, гамма-кванты) обладают различной про­никающей и ионизирующей способностью. Наименьшей проникающей способностью обладают альфа-частицы(ядра гелия), длина пробега которых в тка­ни человека составляет доли миллиметра и в возду­хе -несколько сантиметров.

Они не могут даже прой­ти через лист бумаги, но обладают наибольшей ионизирующей способностью. Бета-частицы по срав­нению с альфа-частицами обладают большей про­никающей способностью (длина пробега в воздухе составляет метры) и уже задерживаются не бума­гой, а более твердыми материалами (алюминий, оргстекло и др.). Однако ионизирующая способность бета-частиц (электроны, позитроны) в 1000 раз меньше альфа-частиц и при пробеге в "воздухе на 1 см пути образует несколько десятков пар ионов. Гам­ма-кванты по своей природе относятся к электро­магнитным излучениями и обладают большой про­никающей способностью (в воздухе до нескольких километров); их ионизирующая способность суще­ственно меньше, чем у альфа- и бета-частиц. Нейт­роны (частицы ядра атома) обладают также значи­тельной проникающей способностью, что объясня­ется отсутствием у них заряда. Их ионизирующая способность связана с так называемой «наведенной радиоактивностью», которая образуется в результа­те «попадания» нейтрона в ядро атома вещества и тем самым нарушает его стабильность, образует ра­диоактивный изотоп. Ионизирующая способность нейтронов при определенных условиях может быть аналогичной альфа-излучению.

Ионизирующие излучения, обладающие большой проникающей способностью представляют опас­ность в большей степени при внешнем облучении, а альфа- и бета-излучения при непосредственном воздействии на ткани организма при попадании внутрь организма с вдыхаемым воздухом, водой, пищей.

При внешнем облучении всего тела или отдель­ных его участков (местном воздействии) или внут­реннем облучении человека или животных в пора­жающих дозах может развиться заболевание, на­зываемое лучевой болезнью.

В настоящее время лучевое поражение людей мо­жет быть связано с нарушением правил и норм ра­диационной безопасности при выполнении работ с источниками ионизирующих излучений, при авари­ях на радиационноопасных объектах, при ядерных взрывах и др. В зависимости от полученной дозы и длительности облучения у пострадавших может раз­виться острая или хроническая лучевая болезнь.

Влияние ЧС на психическое состояние человека и его…

Чрезвычайная ситуация – нарушение нормальных условий жизнедеятельности людей на определенной территории.

Острая лучевая болезнь, ее стадии

Острая лучевая болезнь развивается при одно­кратном тотальном облучении тела в поражающих.

− Examer из Таганрога;
− Учитель Думбадзе В. А.
из школы 162 Кировского района Петербурга.

Наша группа ВКонтакте
Мобильные приложения:

Какое из трех типов излучений (-, - или -излучение) обладает наибольшей проникающей способностью?

1) -излучение

2) -излучение

3) -излучение

4) все примерно в одинаковой степени

Наибольшей проникающей способностью обладает -излучение, наименьшей - -излучение. Если -частицы поглощаются листом картона, то для поглощения -квантов необходимы достаточно толстые свинцовые пластины.

Какое излучение обладает наибольшей проникающей способностью

Высокорадиоактивный фон (смог) – продукт распада атомов с последующим изменением их ядер. Элементы, обладающие этой способностью, считаются высокорадиоактивными. Каждое соединение наделено определенной способностью проникать в организм и вредить ему. Бывают природными и искусственными. Наиболее сильной проникающей способностью обладает гамма-излучение – его частицы способны проходить сквозь тело человека, считаются очень опасными для здоровья человека.

Люди, работающие с ними, должны носить спецодежду, поскольку их влияние на здоровье может быть очень сильным – это зависит от вида излучения.

Разновидности и особенности излучений

Существует несколько разновидностей радиации. Людям по роду деятельности приходится сталкиваться с ней – кому каждый день, кому время от времени.

Частицы гелия, несут отрицательный заряд, образуются в процессе распада тяжелых соединений природного происхождения – тория, радия, других веществ этой группы. Потоки с альфа-частичками не могут проникать сквозь твердые поверхности и жидкость. Человеку для защиты от них достаточно быть просто одетым.

Данный вид излучения располагает большей мощностью в сравнении с первым видом. Для защиты человеку потребуется плотный экран. Продуктом распада нескольких радиоактивных элементом выступает поток позитронов. Выделяются от электронов только зарядом – они носят положительный заряд. Если на них воздействует магнитное поле, отклоняются и двигаются в обратном направлении.

Образуется в процессе распада ядер у многих радиоактивных соединений. Излучение обладает высокой проникающей способностью. Характеризуется жесткими электромагнитными волнами. Для защиты от их воздействия потребуются экраны, изготовленные из металлов, способных хорошо защитить человека от проникновения. Например, из свинца, бетона или водяные.

Данные лучи обладают большой проникающей способностью. Может образовываться в рентгеновских трубках, электронных установках типа бетатрона и ему подобным. Характер действия этих радиоактивных потоков очень сильный, что и позволяет утверждать, что рентгеновский луч наделен способностью сильного проникновения, а значит – опасен.

Во многом похожий на вышеупомянутый, отличается только протяженностью и происхождением лучей. Рентгеновский поток имеет длиннее волну с низкой частотой излучения.

Ионизация здесь осуществляется в основном путем выбивания электронов. А за счет расхода собственной энергии вырабатывается в незначительном количестве.

Бесспорно, наибольшую проникающую способность имеют лучи этого излучения, особенно жесткие.

Какой тип излучения наиболее опасный для людей

Самые жесткие кванты имеют рентгеновские волны и гамма-излучение. У них самые короткие волны, следовательно, больше коварства и опасности несут человеческому организму. Коварство их поясняется тем, что человек не чувствует их воздействия, но хорошо ощущает последствия. Даже в малых дозах облучения в организме происходят необратимые процессы и мутации.

Передача информации внутри человека носит электромагнитный характер. Если в организм проникает мощный луч облучения, то этот процесс нарушается. Человек вначале чувствует легкое недомогание, а позже патологические нарушения – гипертонию, аритмию, нарушения гормональной природы и другие.

Самая низкая способность проникновения у альфа-частиц, поэтому они считаются самыми, если так можно сказать, безопасными для человека. Бета-радиация намного мощнее и ее проникновение в организм более опасное. Наибольшей проникающей способностью обладает излучение гамма-частицами и рентгеновские лучи. Они способны проходить насквозь человека, защититься от них намного тяжелее, остановить их может только бетонная конструкция или свинцовый экран.

Как определяется электромагнитный смог в жилой квартире

В каждой благоустроенной квартире имеется определенный уровень радиоактивных волн. Они исходят от бытовых электронных приборов и устройств. Определяется электромагнитный смог специальным прибором – дозиметром. Хорошо, когда он имеется, если его нет, то выявить их можно и другим способом. Для этого нужно включить все электрические приборы и обычным радиоприемником проверить уровень излучения каждого из них.

Если в нем возникают помехи, слышен писк, посторонние помехи и треск, то рядом находится источник смога. И чем ощутимее они, тем мощнее и сильнее электромагнитные излучения из него исходят. Источником смога могут служить стены квартиры. Любые действия жильцов в защиту собственного организма от их воздействия – залог здоровья.

Разные виды излучений сопровождаются высвобождением разного количества энергии и обладают разной проникающей способностью, поэтому они оказывают неодинаковое воздействие на ткани живого организма.

Чем больше энергия излучения и глубина проникновения лучей, тем тяжелее лучевая травма.

Так проникающая способность g-излучения, которое распространяется со скоростью света, очень велика: его может задержать лишь толстая свинцовая или бетонная плита.

При внешнем облучении человека:

    альфа-частицы полностью задерживаются поверхностным слоем кожи;

    бета-частицы не могут проникнуть в глубь человеческого организма больше, чем на несколько миллиметров;

    гамма-кванты способны вызвать облучение всего тела.

Период полураспада

Число распадов в секунду в радиоактивном источнике называется активностью . Единица измерения активности – беккерель (Бк,Bq): 1 Бк равен одному распаду в секунду.

Время, за которое распадается в среднем половина всех радионуклидов данного типа в любом радиоактивном источнике, называется периодом полураспада. Уменьшение концентрации радионуклидов в организме в два раза называется периодом полувыведения. К примеру, на территории Украины в результате аварии на ЧАЭС выпали следующие радионуклиды с периодами полураспада и полувыведения: углерод 14 – 5730 лет и 200 дней соответственно; цезий 137 , 30 лет и 100 дней соответственно; стронций 90 – 29 и 20 лет соответственно; йод 131 – 8 и 138 дней соответственно. Безопасной для проживания и использования территория становится по истечении примерно 10 периодов полураспада.

Природный радиоактивный фон

На население земного шара постоянно воздействует природный радиационный фон. Это космическая радиация (протоны, альфа-частицы, гамма-лучи), излучение естественных радиоактивных веществ, присутствующих в почве, и излучение тех радиоактивных веществ (также естественных), которые попадают в организм человека с воздухом, пищей, водой. Суммарная доза, создаваемая естественным излучением, сильно варьируется в различных районах Земли. В Украине она колеблется от 70 до 200 мбэр/год.

Естественный фон дает примерно одну треть так называемой популяционной дозы общего фона. Еще треть человек получает при медицинских диагностических процедурах – рентгеновских снимках, флюорографии, просвечивании и тд. Остальную часть популяционной дозы дает пребывание человека в современных зданиях. Вклад в усиление радиационного фона вносят и тепловые электростанции, работающие на угле, поскольку уголь содержит рассеянные радиоактивные элементы. При полетах на самолетах человек также получает небольшую дозу ионизирующего облучения. Но все это очень малые величины, не оказывающие вредного влияния на здоровье человека.

Действие ионизирующего излучения

В органах и тканях биологических объектов как и в любой среде при облучении в результате поглощения энергии идут процессы ионизации и возбуждения атомов.

Действие ионизирующего излучения заключается в радиолизе молекул воды. Как известно, вода составляет около 80 % массы всех органов и тканей человеческого организма.

При ионизации воды образуются радикалы, обладающие как окислительными, так и восстановительными свойствами.

СВОБОДНЫЕ РАДИКАЛЫ – частицы с неспаренными электронами на внешних атомных или молекулярных орбиталях

Пероксидные вещества (или свободные радикалы) обладают сильными окислительными и токсическими свойствами. Вступая в соединения с органическими веществами, они вызывают значительные химические изменения в клетках и тканях, денатурации белковых и других органических структур с образованием токсических гистаминоподобных веществ.

Проходя через вещество, микрочастицы излучений растрачивают свою энергию и столкновениях с орбитальными электронами, а также во взаимодействиях с мощными электрическими и магнитными полями при пролете частиц вблизи ядра. Большая часть столкновений и взаимодействий происходит все же не с ядрами, а с электронами на оболочках атома. Выбивание электрона из атома приводит к образованию иона, т. е. к ионизации.
Энергия частиц, испускаемых при радиоактивном распаде, имеет порядок мега- или килоэлектронвольт, а в единичном столкновении поглощается (передается атомам среды) в среднем около 33-35 эВ энергии, из чего следует, что растрата всей энергии потребует большого числа актов ионизации. Например, при средней энергии β-излучения 90Y, равной 930 кэВ, полное поглощение ее произойдет в ~10в4 столкновениях.
Общая длина пути частицы зависит от плотности среды. В табл. 2.5 приведены примерные значения проникающей способности различных видов излучений на различных материалах. В общем случае соотношение проникающей способности разных видов излучения можно представить как γ > β > α.


Кроме проникающей способности, другим важным показателем излучении является плотность ионизации, которую определяют как среднее число пар ионов, образующихся на единице длины пути частицы. Естественно, что оба эти показателя взаимосвязаны обратным соотношением. Плотность ионизации зависит, помимо прочего, от размера частиц излучения: чем крупнее частицы, тем больше вероятность столкновений при прохождении через атомы среды и тем выше плотность ионизации. Наибольшее значение этого показателя у α- и n-излучений, гораздо ниже - у β-излучений (потоков электронов и позитронов), и совсем невелика - у γ-фотонов, тем более что последние еще и не имеют электрического заряда, а потому не могут отклоняться в магнитных и электрических полях в атоме. Но порядку величины плотности ионизации α-, β- и γ-излучений в однотипных средах различаются в соотношении примерно 10в4:10в2: 1.
След от движения частиц в среде называется треком. От столкновение с орбитальными электронами направление движения такой крупной частицы, как α (масса ее примерно в 7400 раз больше массы электрона), практически не изменяется, но траектории легких частиц (свободных электронов или позитронов) оказываются сильно изломанными, зигзагообразными. Рассмотрим особенности прохождения разных видов излучения через вещество.
α-излучение. В соответствии с наибольшей плотностью ионизации α-частиц пробег их во всех средах очень невелик: даже в воздухе α-излучение распространяется на расстояние, не превышающее 3-7 см, а в плотных средах длина пробега еще меньше. В биотканях пробег α-частицы редко превышает 40-60 мкм, т. е. действие ее обычно ограничено размерами одной клетки. Малая проникающая способность α-излучения делает практически ненужной какую-либо защиту от незакрытых источников α-излучения.
β-излучение. Пробеги β-частиц заметно различаются в зависимости от их энергии. Существуют мягкие излучения с энергией менее 0,5 МэВ и жесткие с энергией более 1 МэВ. Пробег β-частиц жестких излучателей (например, 32Р или 90Y) достигает 10 м и более в воздухе, но в плотных средах составляет всего несколько мм. Реальный пробег (по толщине материала, полностью поглощающего излучение) еще меньше из-за зигзагообразных траекторий движения β-частиц. Поэтому при поверхностном загрязнении почвы внешнее облучение от β-излучающих изотопов (от радиостронция, например) не представляет серьезной опасности, так как излучение не достигает поверхности почвы при нахождении радионуклида уже на глубине более 1 см.
В лаборатории для защиты от β-излучений применяются экраны из органического стекла толщиной до 10 мм. Для работы с мягкими β-излучателями даже такая защита не требуется, так как максимальный пробег в воздухе β-излучения от 14С (максимальная энергия 0,156 МэВ) составляет всего 15 см, от тритии (2Н, максимальная энергии 0,019 МэВ) - менее 5 мм.
γ-излучение. В сравнительном плане проникающая способность γ-радиации является наибольшей, однако с учетом фактора геометрического рассеяния, который пропорционален квадрату расстояния, реальный радиус действия γ-источников на открытой местности составляет - 200-300 м. С помощью самолетов или вертолетов, оборудованных чувствительной аппаратурой, по γ-излучению можно выявлять и наносить на карты уровни радиоактивного загрязнения местности, в картографии это наливается методом аэрогамма съемки. Однако надо помнить, что максимально надежными и точными являются результаты при пролетах на высоте от 25-50 до 200-254) м, но не выше.
В плотных средах γ-излучение способно проходить через десятки и даже сотни сантиметров толщины. Для экранирования γ-излучения выбирают материалы с высокой плотностью, например свинец. Толщина экранирующей защиты определяется общей активностью источника, для надежной защиты может потребоваться толщина свинца до 5-30 см (и даже больше).
Нейтронное излучение. Поглощение нейтронов в плотных средах происходит со сравнительно высокой плотностью ионизации, поэтому проникающая способность их невелика. Вводе быстрые нейтроны замедляются до малых энергий на расстояниях порядка 8 см, в грунтах или строительных конструкциях - до 20-40 см. Механизмы поглощения нейтронов весьма специфичны, поэтому необходимо подбирать специальные материалы для защиты от быстрых или медленных нейтронов.

Правильный ответ:

А) Возрастает с ростом мощности дозы.

Г) Уменьшается при получении доз малыми порциями.

Е) Различно для конечностей и внутренних органов.

(ИЭс–023–ОРБ, п.4; НРБ–99, п.9)

Биологическое действие ИИ

4.1 На первом месте по степени радиационной опасности стоит a -излучение вследствие высокой ионизирующей способности. Однако его внешним облучением можно пренебречь, т.к. a - частицы не достигают чувствительных к излучению клеток; особо опасным является попадание a -излучателей внутрь организма.

На втором месте по степени радиационной опасности находятся быстрые нейтроны. Они, испытывая упругие соударения с легкими ядрами ткани (водород), образуют протоны отдачи, вызывающие высокую плотность ионизации.

b и g излучения имеют один и тот же взвешивающий коэффициент излучения (см. приложение Б). Несколько большая плотность ионизации при бета-излучении компенсируется меньшим объемом облучаемой ткани из-за меньшей проникающей способности. Потоки b - излучений в основном воздействуют на покровные ткани, глаза, способны вызвать сухость и ожоги кожи, хрупкость и ломкость ногтей, помутнение хрусталика.

Особо опасно попадание РАВ внутрь организма ввиду:

  • увеличения времени облучения (круглосуточное облучение);
  • уменьшения ослабления потока излучения (происходит вплотную);
  • невозможности применения защиты;
  • избирательного отложения в тканях организма (например: стронций (Sr), плутоний (Pu) – в скелете; церий, лантан – в печени; рутений, цезий - в мышцах; йод – в щитовидной железе).

Наиболее опасными являются изотопы, имеющие большой период полураспада и отлагающиеся вблизи костного мозга (в костях) Sr и Pu.

Периоды полувыведения радионуклидов из организма определяются физико-химическими свойствами РАВ, состоянием организма; режимом дня, правильным применением лечебно-профилактического питания.

4.2 Взаимодействие ИИ с биологической тканью приводит к ионизации и возбуждению атомов, разрыву химических связей, образованию высокоактивных в химическом отношении соединений, так называемых “свободных радикалов”. Радикалы могут вызвать модификацию молекул, необходимых для нормального функционирования клетки.

Так как организм на 75% состоит из воды, механизм реакций действует путем ионизации ее молекул с образованием перекиси водорода H 2 O 2 , гидратных окислов, взаимодействующих с молекулами клеток и приводящих к разрыву химических связей.

Поражения клеточных структур приводят к нарушениям деятельности нервной системы, процессов регуляции деятельности тканей и органов, регенерации, обновления клеток. Наиболее радиочувствительными являются клетки постоянно обновляющихся тканей и органов (костного мозга, селезенки, половых органов).

Нарушения в системе кроветворных органов (прежде всего красного костного мозга) приводят к уменьшению количества:

  • белых кровяных телец (лейкоцитов), ограничения защитных сил организма в борьбе с инфекциями;
  • кровяных пластин (тромбоцитов), ухудшая свертываемость крови;
  • красных кровяных телец (эритроцитов), ухудшая снабжение клеток кислородом.

При повреждении стенок кровеносных сосудов возможны кровоизлияния, потери крови и нарушения деятельности органов и систем.

4.3. При небольших дозах излучений и здоровом организме пораженная ткань восстанавливает свою функциональную деятельность. Поражающее действие ИИ возрастает с ростом мощности дозы, величины единовременно полученной дозы и несколько уменьшается при получении доз малыми порциями.

При однократном облучении всего тела дозой до 0,25 Гр (25 рад) изменения в составе здоровья не обнаруживаются. При поглощенной дозе в 0,25¸ 0,5 Гр (25¸ 50 рад) также отсутствуют внешние признаки лучевого поражения, могут наблюдаться изменения в крови, которые вскоре приходят в норму.

Красный костный мозг и другие элементы кроветворной системы наиболее уязвимы к облучению, теряя способность нормального функционирования при дозах 0,5¸ 1 Гр (50¸ 100 рад). Однако, если не вызвано повреждения всех клеток, то кроветворная система, благодаря способности к регенерации, восстанавливает свои функции. После облучения отмечается чувство усталости без серьезной потери трудоспособности; менее чем у 10% облучённых может появиться рвота, изменения в составе крови.

4.4 В случае однократного облучения дозой свыше 1 Гр (100 рад) возникают различные формы лучевой болезни:

4.4.1 При облучении 1,5¸ 2 Гр (150¸ 200 рад) – кратковременная легкая форма острой лучевой болезни, проявляющаяся в виде выраженной лимфопении (уменьшении числа лимфоцитов). В 30¸ 50% случаев может наблюдаться рвота в первые сутки после облучения, смертельные случаи отсутствуют.

4.4.2 При облучении 2,5¸ 4 Гр (250¸ 400 рад) возникает лучевая болезнь средней степени тяжести, сопровождающаяся рвотой в первые сутки. Резко снижается количество лейкоцитов, появляются подкожные кровоизлияния. В 20% случаев возможен смертельный исход через 2¸ 6 недель после облучения.

4.4.3 При дозе 4¸ 6 Гр (400¸ 600 рад) развивается тяжелая степень лучевой болезни, с 50% смертельных исходов в течение месяца после облучения.

4.4.4 Крайне тяжелая степень лучевой болезни развивается при дозах выше 6¸ 7 Гр (600¸ 700 рад), сопровождаемая рвотой через 2¸ 4 часа после облучения. В крови почти полностью исчезают лейкоциты, появляются подкожные и внутренние (в основном в желудочно-кишечном тракте) кровоизлияния. Из-за инфекционных заболеваний и кровотечений смертность в этом случае близка к 100%.

4.4.5. Все вышеперечисленные данные относятся к облучению без последующего терапевтического вмешательства, способного с помощью противорадиационных препаратов значительно уменьшить воздействие ИИ. Успех лечения во многом зависит от своевременного оказания первой медицинской помощи.

4.4.6 .При дозах, меньших чем вызывающие острую лучевую болезнь, но систематически значительно больших пределов доз, может развиваться хроническая лучевая болезнь, уменьшение числа лейкоцитов, малокровие.

4.5. Кроме лучевой болезни под действием ИИ, возможны локальные повреждения органов, также имеющие выраженный дозовый порог:

4.5.1 Облучение дозой 2 Гр (200 рад) может привести к длительному (на годы) ухудшению работоспособности семенников, нарушения деятельности яичников отмечаются при дозах более 3 Гр (300 рад).

4.5.2 Длительное (15¸ 20 лет) облучение хрусталика глаза дозой 0,5¸ 2 Гр (50¸ 200 рад) может привести к увеличению его плотности, помутнению, постепенной гибели его клеток, т.е. катаракте.

4.5.3 Большинство внутренних органов способны выдержать большие дозы – в десятки грей (отнесенные по взвешивающему коэффициенту для тканей к “остальным”). Косметические дефекты кожи отмечаются при дозах ~ 20 Гр (2000 рад).

4.6 Малые дозы облучения (менее 0,5 Гр) способны инициировать отдаленные во времени эффекты – раковые заболевания или генетические повреждения.

Реакция организма на воздействие ИИ может проявляться в отдаленный (10¸ 15 лет) после облучения период – в форме лейкозов, поражений кожи, катаракты, опухолей, смертельных и не смертельных раковых заболеваний.

В ядрах клеток организма находятся по 23 пары хромосом, удваивающихся при делении и располагающихся в определенном порядке в дочерних клетках, обеспечивая передачу наследственных свойств от клетки к клетке. Хромосомы состоят из больших молекул дезоксирибонуклеиновых кислот, изменения в которых могут привести к образованию дочерних клеток, не идентичных исходным. Появление таких изменений в половых клетках могут привести к неблагоприятным последствиям у потомства. При этом наиболее вероятно возникновение отклонений при соединении гена с другим, имеющим такое же нарушение. Отсюда исходит положение норм РБ об ограничении числа облученных лиц.

4.7 Выход злокачественных новообразований и генетических повреждений обусловлен множеством факторов внешней среды, носит вероятностный характер, оценить который количественно можно только для большого числа людей, т.е. статистическими методами

Имеющиеся радиобиологические данные позволяют достоверно оценить выход неблагоприятных последствий лишь при сравнительно больших дозах, больших 0,7 Гр (70 рад). При отсутствии острых лучевых поражений практически невозможно установить причинную связь между облучением и появлением отдаленных последствий, т.к. они могут быть обусловлены и другими факторами нерадиационного характера. Доза облучения приводит к росту вероятности, повышению риска неблагоприятных для организма последствий, тем большему, чем больше доза. Количественные оценки рисков при малых дозах получены продлением, экстраполяцией зависимости эффектов от дозы из области больших доз (0,7¸ 1 Гр), а также экспериментов над животными. При этом эффекты реакции организма, которые можно оценить только статистическими методами, последствия, вероятность возникновения которых существует при любых малых дозах (однако доза не приводит к этим последствиях во всех случаях) и возрастает с ростом доз, называются стохастическими.

Ионизирующее излучение (далее - ИИ) - это излучение, взаимодействие которого с веществом приводит к ионизации атомов и молекул, т.е. это взаимодействие приводит к возбуждению атома и отрыву отдельных электронов (отрицательно заряженных частиц) из атомных оболочек. В результате, лишенный одного или нескольких электронов, атом превращается в положительно заряженный ион - происходит первичная ионизация. К ИИ относят электромагнитное излучение (гамма-излучение) и потоки заряженных и нейтральных частиц - корпускулярное излучение (альфа-излучение, бета-излучение, а также нейтронное излучение).

Альфа-излучение относится к корпускулярным излучениям. Это поток тяжелых положительно заряженных а-частиц (ядер атомов гелия), возникающее в результате распада атомов тяжелых элементов, таких как уран, радий и торий. Поскольку частицы тяжелые, то пробег альфа-частиц в веществе (то есть путь, на котором они производят ионизацию) оказывается очень коротким: сотые доли миллиметра в биологических средах, 2,5—8 см в воздухе. Таким образом, задержать эти частицы способен обычный лист бумаги или внешний омертвевший слой кожи.

Однако вещества, испускающие альфа-частицы, являются долгоживущими. В результате попадания таких веществ внутрь организма с пищей, воздухом или через ранения, они разносятся по телу током крови, депонируются в органах, отвечающих за обмен веществ и защиту организма (например, селезенка или лимфатические узлы), вызывая, таким образом, внутреннее облучение организма. Опасность такого внутреннего облучения организма высока, т.к. эти альфа-частицы создают очень большое число ионов (до нескольких тысяч пар ионов на 1 микрон пути в тканях). Ионизация, в свою очередь, обуславливает ряд особенностей тех химических реакций, которые протекают в веществе, в частности, в живой ткани (образование сильных окислителей, свободного водорода и кислорода и др.).

Бета-излучение (бета-лучи, или поток бета-частиц) также относится к корпускулярному типу излучения. Это поток электронов (β--излучение, или, чаще всего, просто β -излучение) или позитронов (β+-излучение), испускаемых при радиоактивном бета-распаде ядер некоторых атомов. Электроны или позитроны образуются в ядре при превращении нейтрона в протон или протона в нейтрон соответственно.

Электроны значительно меньше альфа-частиц и могут проникать вглубь вещества (тела) на 10-15 сантиметров (ср. с сотыми долями миллиметра у а-частиц). При прохождении через вещество бета-излучение взаимодействует с электронами и ядрами его атомов, расходуя на это свою энергию и замедляя движение вплоть до полной остановки. Благодаря таким свойствам для защиты от бета-излучения достаточно иметь соответствующей толщины экран из органического стекла. На этих же свойствах основано применение бета-излучения в медицине для поверхностной, внутритканевой и внутриполостной лучевой терапии.

Нейтронное излучение - еще один вид корпускулярного типа излучений. Нейтронное излучение представляет собой поток нейтронов (элементарных частиц, не имеющих электрического заряда). Нейтроны не оказывают ионизирующего действия, однако весьма значительный ионизирующий эффект происходит за счет упругого и неупругого рассеяния на ядрах вещества.

Облучаемые нейтронами вещества могут приобретать радиоактивные свойства, то есть получать так называемую наведенную радиоактивность. Нейтронное излучение образуется при работе ускорителей элементарных частиц, в ядерных реакторах, промышленных и лабораторных установках, при ядерных взрывах и т. д. Нейтронное излучение обладает наибольшей проникающей способностью. Лучшими для защиты от нейтронного излучения являются водородсодержащие материалы.

Гамма излучение и рентгеновское излучение относятся к электромагнитным излучениям.

Принципиальная разница между двумя этими видами излучения заключается в механизме их возникновения. Рентгеновское излучение - внеядерного происхождения, гамма излучение - продукт распада ядер.

Рентгеновское излучение, открыто в 1895 году физиком Рентгеном. Это невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка от - от 10 -12 до 10 -7 . Источник рентгеновских лучей - рентгеновская трубка, некоторые радионуклиды (например, бета-излучатели), ускорители и накопители электронов (синхротронное излучение).

В рентгеновской трубке есть два электрода - катод и анод (отрицательный и положительный электроды соответственно). При нагреве катода происходит электронная эмиссия (явление испускания электронов поверхностью твёрдого тела или жидкости). Электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода, где происходит их резкое торможение, вследствие чего возникает рентгеновское излучение. Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это одно его из свойств, основное для медицины - то, что оно является проникающим излучением и соответственно пациента можно просвечивать с его помощью, а т.к. разные по плотности ткани по-разному поглощают рентгеновское излучение - то мы можем диагностировать на самой ранней стадии многие виды заболеваний внутренних органов.

Гамма излучение имеет внутриядерное происхождение. Оно возникает при распаде радиоактивных ядер, переходе ядер из возбужденного состояния в основное, при взаимодействии быстрых заряженных частиц с веществом, аннигиляции электронно-позитронных пар и т.д.

Высокая проникающая способность гамма-излучения объясняется малой длиной волны. Для ослабления потока гамма-излучения используются вещества, отличающиеся значительным массовым числом (свинец, вольфрам, уран и др.) и всевозможные составы высокой плотности (различные бетоны с наполнителями из металла).



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения