Подпишись и читай
самые интересные
статьи первым!

Нестареющий гений: мозг Эйнштейна показали широкой публике. Нестареющий гений: мозг Эйнштейна показали широкой публике Размер мозга эйнштейна

Эйнштейн был величайшим гением современности, чьи достижения в области физики изменили наш взгляд на мир и перевернули науку с ног на голову. Сегодня все знают имя этого гениального ученого, он есть несколько фактов из его жизни, с которыми вы, возможно, не знакомы.

Он никогда не проваливал математику

Это популярный миф - в детстве Эйнштейн «заваливал» экзамены по математике. Однако это совсем не так. Гениальный ученый был сравнительно средним учеником, но математика ему всегда давалась легко, что неудивительно.

Эйнштейн поддерживал создание ядерной бомбы

Хотя роль ученого в Манхэттенском проекте часто преувеличивается, он действительно обратился с письмом к президенту США с просьбой поскорее начать работу над ядерной бомбой. Эйнштейн был пацифистом и после первых испытаний не раз высказывался против ядерного оружия, однако он был уверен в том, что США должны были создать бомбу до нацистской Германии, иначе итог войны мог быть совсем другой.

Он был отличным музыкантом

Если бы физика не стала его призванием, Эйнштейн смог бы покорять филармонические залы. Мать ученого была пианисткой, поэтому любовь к музыке была у него в крови. С пяти лет он занимался игрой на скрипке и был влюблен в музыку Моцарта.

Эйнштейну предлагали пост президента Израиля

Когда первый президент нового государства Израиль Хаим Вейцман умер, Альберту Эйнштейну предложили занять его пост, но гениальный физик отказался. Примечательно, что сам Вейцман был талантливым ученым-химиком.

Он женился на своей двоюродной сестре

После развода с первой женой, преподавательницей физики и математики Милевой Марич, Эйнштейн женился на Эльзе Левенталь. На самом деле, отношения с первой женой были очень напряженными, Милеве приходилось терпеть деспотичные настроения своего мужа и его частые связи на стороне.

Он получил Нобелевскую премию, но не за теорию относительности

В 1921 году Альберту Эйнштейну была присуждена Нобелевская премия за достижения в области физики. Однако его величайшее открытие - теория относительности - осталось без нобелевского признания, хоть и было номинировано. Свою заслуженную премию он получил за квантовую теорию фотоэффекта.

Он любил плавать под парусами

Еще с самого университета это было его любимым хобби, однако сам великий гений признавал, что был плохим мореплавателем. Эйнштейн до конца своих дней так и не научился плавать.

Эйнштейн не любил носить носки

И обычно он их даже не надевал. В одном из писем Эльзе он хвастался, что сумел ни разу не надеть носки за все время пребывания в Оксфорде.

У него была незаконнорожденная дочь

До свадьбы с Эйнштейном Милева родила ему дочь в 1902 году, из-за чего была вынуждена прервать собственную научную карьеру. Девочку по взаимному согласию назвали Лизерль, однако ее судьба неизвестна, потому что с 1903 года она перестает фигурировать в переписке.

Мозг Эйнштейна был украден

После смерти ученого патологоанатом, проводивший вскрытие, изъял мозг Эйнштейна без разрешения членов семьи. Впоследствии он получил разрешение от сына гениального физика, однако был уволен из Принстона за то, что отказался его возвращать. Только в 1998 году он вернул мозг ученого.

14 марта 1879 года родился Альберт Эйнштейн. Как часто бывает с великими людьми, многие факты, касающиеся их жизни, обросли легендами. Одна из главных загадок и тем для споров, связанных с немецким физиком, касается его мозга. Был ли он большего размера, чем у простых смертных? Что было не так с его нейронами? А с полушариями? «Футурист» рассказывает о том, что научная общественность думает о мозге Эйнштейна.

Причина исследований

После смерти Эйнштейна в 1955 году, патологоанатом Томас Харви (которого несколько лет спустя лишили медицинской лицензии) решил сохранить мозг ученого для науки, в то время как тело его было кремировано. Повозив орган некоторое время по стране, Харви разрезал мозг на 240 кусочков и разослал всем заинтересованным. Сын Эйнштейна Ганс, как ни странно, дал согласие, и ученые начали многочисленные исследования. В 80-х и 90-х годах было проведено сразу несколько опытов и измерений, результатом которых стали заявления о большем количестве нейронов в мозге физика, чем у обычного человека, а также сообщения о выдающемся размере и ширине его мозга.

Мозолистое тело и связь между нейронами

Более подробное и актуальное исследование было проведено в 2013 году. Ученые под предводительством Дин Фальк углубились в вопрос, касающийся двух полушарий мозга: левого - ответственного, за логику, и правого - так называемого “творческого” полушария. Они предположили, что гениальность Эйнштейна была следствием отличных связей между обоими полушариями.

Сплетение нервных волокон, отвечающее за связь полушарий, называют мозолистым телом . Такой пучок нейронов был найден не только у людей, но и у некоторых животных. Мозолистое тело позволяет левой части мозга ”разговаривать” с правой, и наоборот.

Исследование ученых Государственного университета Флориды называется “Мозолистое тело мозга Альберта Эйнштейна : ключ к его высокому интеллекту”. Им удалось создать технологию, позволяющую подробно изучить мозолистое тело. В итоге были обнаружены различия в толщине на разных участках сплетения нейронов “мостика” мозга, и местами мозолистое тело по количеству нейронов значительно превосходило мозг добровольцев, пришедших в лабораторию для сравнения.

Эйнштейн был не только гениальным физиком, но и талантливым скрипачом. И это не случайность: музыкальные занятия задействуют все полушария мозга и улучшают связи между ними. Похожая история и с велосипедом, на котором Эйнштейн перемещался практически ежедневно. Существует прочная связь между аэробным движением (например, когда мы крутим педали велосипеда), охватывающим все полушария мозга, и творческими порывами. Вот почему идеи так часто посещали гения во время физических упражнений.

На основе изучения частей мозга Эйнштейна, Фальк и ее коллегам удалось выявить наглядные особенности, характерные для человека с высоким интеллектом: сложность узоров и необычайно глубокие борозды, особенно в префронтальной и зрительной корах, а также теменных долях. Считается, что префронтальная кора отвечает за абстрактное и критическое мышление. Кстати, по сравнению со среднестатистическим человеком, у Эйнштейна обнаружилась и увеличенная соматосенсорная кора : она получает и обрабатывает входящую сенсорную информацию.

Опровержения

Однако годом позже ученый из Университета Пейс в Нью-Йорке Теренс Хайнс попытался развеять все мифы об особенностях мозга Эйнштейна. В рамках собственного эксперимента он проанализировал три гистологических исследования тканей мозга знаменитого физика и не обнаружил заметных отличий от мозга обычного испытуемого.

“Это не должно быть большим сюрпризом”, - сказал Хайнс. - “Мозг - чрезвычайно сложная структура, и наивно предполагать, что анализ лишь нескольких небольших частей мозга (речь о 240 кусочках - прим.редакции) может выявить какие-либо данные, связанные с особенностями этого конкретного человека”.

Хайнс также высказал сомнения касательно большого размера мозга Эйнштейна. В первую очередь он разгромил оригинальное исследование патологоанатома Томаса Харви . Наибольшие претензии у Хайнса вызвала контрольная группа, с которой сравнивали мозг Эйнштейна: это были люди 47-80 лет (сам Эйнштейн умер в 76). И, конечно, за годы хранения в холодильных установках, орган ЦНС физика мог значительно деформироваться.

Не выявили исследования Хайнса и какого-либо статистически значимого превышения количества нейронов в мозге Эйнштейна. Правда, ткань самого органа была несколько тоньше, чем обычно, что может говорить о более плотном прилегании нейронов друг к другу и, соответственно, более эффективных связях между ними. Но это, опять же, только предположение.

“Вообще, я скептически отношусь к тому, что размер мозга может как-то влиять на его нейробиологию, особенно учитывая, что мы так до конца и не определились, что же такое гениальность”, - подвел итог Хайнс.

Внешность - не главное

В прошлом году на сайте Quora, где на вопросы простых пользователей отвечают эксперты, появился любопытный комментарий от доктора нейропсихологии Джойс Шенкайн .

“Нужно учитывать, что мозг каждого человека демонстрирует абсолютно разные возможности в зависимости от того, голодны ли мы, возбуждены, спокойны, достаточно ли спим, принимаем лекарства… Чтобы предсказать способности и поведение, нужно гораздо больше, чем просто посмотреть на мозг. Один его вид не даст нам практически ничего”.

Любопытный пример, подтверждающий слова Шенкайн, - доктор Джеймс Фэллон . Он всю жизнь посвятил изучению мозга психопатов и, в частности, его внешнему виду. В итоге при помощи МРТ доктор узнал, что его собственный мозг выглядит точно так же, как мозг его пациентов, классических психопатов. При этом, очевидно, что сам доктор был абсолютно нормальным.

Что можно сказать в итоге? Сам Эйнштейн, скорее всего, все-таки не хотел, чтобы его мозг стал предметом столь тщательного изучения и даже некоторой истерии. Вряд ли он увидел бы смысл в этих дорогостоящих исследованиях, и, возможно, даже сказал бы что-нибудь вроде фразы, авторство которой ошибочно приписывается ему самому: “Не все, что может быть подсчитанным, считается; не все, что считается, может быть подсчитано”.

С детства восхищаюсь патологоанатомами. Вот уж у кого напрочь нет никакого романтизма в голове!

Дело было на даче, за обеденным столом. Мне около четырех лет. Я, вероятно, развеселился и что-то балаболил...

Андрей, не разговаривай во время еды, - не поднимая глаз, нежным металлическим голосом говорит тетя Мила (собственно, она и была первым в моей жизни патологоанатомом). - Ладно я здесь, если подавишься - проткну тебе горло ножом, - ее нож проделал зловещий кульбит над сосиской, - и все будет хорошо. А если меня рядом не окажется?.. - Тетя приостановила «вскрытие» сосиски и проткнула меня своими раскосыми бурятскими глазами.

Надо ли говорить, что после этой «поножовщины» я в присутствии тети Милы долгое время не то что говорить, а даже кашлянуть боялся. Ну правда, что должно быть в голове у человека, чтобы сообщить подобное четырехлетнему ребенку, не ведающему о показаниях к экстренной трахеотомии?! Ответ один: полное отсутствие романтизма.

Тем большее удивление вызывает случай патологоанатома Томаса Харви - врача, укравшего мозг Альберта Эйнштейна.

Эйнштейн умер в Принстонской больнице от разрыва аневризмы аорты ночью 18 апреля 1955 года. В соответствии с пожеланиями покойного, похороны были тихими, быстрыми и только для своих. Его тело кремировали, а пепел развеяли.

Но за те 24 часа, которые разделяли смерть и обращение великого ученого в пепел, Томас Харви - то ли с согласия душеприказчика, то ли без оного (история темная) - вскрыл черепную коробку Эйнштейна, отделил его мозг и положил в банку с формальдегидом. Кстати, офтальмолог той же больницы - Генри Абрамс, воспользовавшись общей неразберихой (только представьте, что там творилось в это утро!), умудрился провести еще и экстирпацию глаз у того же трупа, спрятав их потом в своей банковской ячейке.

Томас Харви, впрочем, проявил куда большую сознательность - он ответственно нашинковал украденный мозг и зафиксировал материал. Полвека мозг Эйнштейна, разрезанный на 240 частей, путешествовал по Америке вместе с романтичным патологоанатомом Томасом Харви. Харви прятал свою «прелесть» от посторонних глаз, менял места жительства, развелся с женой, которая не могла принять его одержимости, и тайно искал союзников. Когда-нибудь, надеялся он, мы сможем разгадать тайну эйнштейновского гения!

В начале 80-х годов банку из-под майонеза с фрагментами мозга Эйнштейна получила от Харви профессор Калифорнийского университета в Беркли Мариана Даймонд. Позже она опубликует , в которой объявит, что в полученных образцах отмечается более высокая, нежели у обычных людей, концентрация глиальных клеток. Глиальные клетки - это что-то вроде изолятора, скрывающего в себе отросток нервной клетки, а потому улучшающего его проводимость.

Чем активнее используется та или иная часть мозга, тем, теоретически, большее глии в соответствующих местах нарастет.

Часть мозга Эйнштейна получила доктор Сандра Вительсон из исследовательского центра Онтарио в Канаде. Она сделала вывод о специфическом сращении зон коры мозга Эйнштейна, ответственных за математическое и пространственное мышление. Именно в этой области, если верить доктору Вительсон, и возникла знаменитая теория относительности (в ее основе как раз геометрическое - визуально-пространственное - понимание гравитации). В этой же логике интерпретируется и еще одна особенность эйнштейновского мозга - пятнадцатипроцентное превышение, в сравнении со средними показателями, размеров теменных долей обоих полушарий.

В конце 90-х доктор Харви, так ничего и не поняв в эйнштейновской гениальности, «утомленный ответственностью за хранение мозга», передал его в Медицинский центр Принстонского университета, где оставшиеся кусочки и по сию пору дожидаются своих романтичных патологоанатомов-исследователей, которых, как мы можем видеть на примере тети Милы, не так уж и много (о судьбе мозга самого доктора Харви, умершего в 2007 году, как вы понимаете, ничего не известно).

Романтизм доктора Харви разрушается банальной арифметикой: наш мозг состоит из примерно миллиарда нейронов, которые связаны друг с дружкой квадриллионом связей (это единица с пятнадцатью нулями), а в ДНК человека лишь 23 тысячи генов, то есть даже если бы весь наш геном занимался исключительно кодированием связей в нашем мозгу, то нам уже не хватает примерно триллиона генов.

Отсюда вывод: мы не рождаемся с гениальными мозгами (что бы под этим словосочетанием ни подразумевалось), а делаем их такими.

Да, есть индивидуальные особенности: некоторые из нас, при всем желании, так и не смогут преодолеть интеллектуальный уровень олигофрении - это примерно 1% населения (не свезло так не свезло), кроме того, специалистами по коннектомике получены достаточно убедительные данные, касающиеся особенностей мозга аутистов и шизофреников, - тут тоже примерно 2-3%. Добавьте сюда еще, скажем, 5% на хромосомные заболевания и стертые случаи какой-нибудь трудно верифицируемой патологии, чтобы с запасом, и мы с большой натяжкой выйдем на 10% населения земного шара, интеллектуальная судьба которых существенно зависит от биологических факторов. (С другой стороны, по линии жизни к нам подступают старики Альцгеймер и Паркинсон с товарищами по дегенерации, но мы их поместим в скобки.)

И снова вернемся к арифметике, она показательна. По расчетным данным Себастьяна Сеунга, количество информации, содержащейся в одном человеческом коннектоме (это все связи между нейронами одного мозга), приблизительно равно зеттабайту, а это - держитесь за стул - 10 в 20-й степени. Очевидно, что перед нами парадокс, но уже другого рода, ведь данное число эквивалентно всей цифровой информации, созданной к настоящему моменту человечеством. Теперь представим себе полтора кило серого и белого вещества, лежащего на столе патологоанатома, и зададимся вопросом, как в нем нечто подобное может уместиться? Разумеется, речь идет не о фактических нейронных ансамблях, а обо всех, теоретически и умозрительно, возможных комбинациях, в которых могут состоять связи данной системы. Конечно, лишь малая толика этих комбинаций осуществляется в действительности, и еще меньше можно отнести к материальному субстрату собственно мыслительной деятельности. В общем, идти таким путем, надеясь обнаружить конкретную мысль в мозге, - это не просто иголку в стоге сена искать, а песчинку на бескрайних пространствах Вселенной.

Даже если мы каким-то чудом соберем в целое разрезанный на кусочки мозг Альберта Эйнштейна, затем восстановим его с помощью супермощного компьютера (такого, к слову, пока нет), то даже в этом случае мы не будем знать, какие именно связи в этом мозгу отвечали за теорию относительности, а какие, например, за мысли о том, как почесать пятку, зудящую во время чтения Нобелевской речи (или, если уж мы говорим об относительности, кого-нибудь, особо зудящего, почесать этой же пяткой). Иными словами, даже если морфологические особенности мозга и имеют значение, их влияние на интеллектуальную функцию ничтожно - важна не морфология связей, а, как бы сказал наш драгоценный Петр Кузьмич Анохин , порождаемые ими «функциональные системы», каковых в мертвом мозге отыскать нельзя.

Да, разные мозги дадут нам слегка отличающиеся картины мира. Допустим, у Эйнштейна действительно способность к визуально-пространственному мышлению от рождения была выражена чуть лучше, чем в среднем по больнице. Но разве длина пальцев определяет гений музыканта? И ведь не факт, что именно геометрическая модель гравитации является идеальной, а главное - универсальной (по крайней мере, с помощью этого же типа мышления тому же Эйнштейну единую теорию поля сформулировать так и не удалось, а он работал над ней почти сорок лет). Вполне возможно, что для решения ряда проблем той же физики и другие особенности мозга были бы очень кстати. Например, Эйнштейн говорил, что невозможно решить задачу, если ее нельзя пространственно представить. Нильсу Бору это как-то не мешало...

Склонность к тому или иному типу мышления неудивительна, но и ничего сама по себе не гарантирует. Если у вас, как и у Эйнштейна, мозг с большей вероятностью готов к пространственно-математическому мышлению, но вы эту его особенность не развиваете, то у вас на патологоанатомическом взвешивании выиграет по соответствующими показателям мозг заурядного инженера, которому ваши потенциальные (но так и не достигнутые) успехи даже не снились.

Мозг - развивающаяся и тренируемая машина. Но секрет опять же не в этом.

Теперь попросим патологоанатомов подождать...

В 1956 году американский психолог Джордж Армитаж Миллер опубликовал знаменитую впоследствии статью «Магическое число семь, плюс-минус два: некоторые пределы нашей способности обрабатывать информацию» . В сущности, все содержание этой статьи уже отражено в ее названии. Однако, «магическое число семь» актуально только для так называемой кратковременной памяти - той, что позволяет нам полминуты помнить объекты после их однократного предъявления (в этом смысле прежние семизначные номера телефонов были, например, идеальны - произносишь и человек записывает, не переспрашивает, а вот добавление кода оператора все испортило).

Функция кратковременной памяти важная, но она не поможет нам ни в решении математических задач, ни в определении маршрута следования, карьерные планы с ее помощью не осмыслишь и смысла жизни не поймешь. Для всех этих и большинства других целей, преследуемых нашей интеллектуальной функцией, нужна память долговременная - необходимо помнить математические правила, названия улиц, лиц и организаций, всяческие концепты и концепции и т.д. Но думать долговременной памятью так же невозможно: всякий раз, когда вы совершаете некий осознанный мыслительный акт, вы что-то изымаете из своей долговременной памяти, а вовсе не используете ее всю разом. Эти извлеченные из долговременной памяти объекты на момент решения задачи существуют в нашем мозгу с помощью механизмов рабочей (или, как ее еще называют, оперативной) памяти.

В 2001 году психолог Нельсон Кован опубликовал данные своего исследования , которое, несмотря на всю его незамысловатость, можно было бы назвать революционным. Кован убедительно показал (справедливости ради надо сказать, что и до него подобные данные публиковались), что в случае с рабочей памятью «магическое число семь» г-на Миллера резко снижается до трех-четырех единиц (и лишь некоторые из нас способны похвастаться тем, что мыслят, жонглируя в своем сознании одновременно пятью интеллектуальными объектами). Данный вывод не может не вызывать удивления. Ну знаем же мы, например, о выдающихся шахматистах, которые демонстрировали чудеса одновременной игры на множестве досок! Или вот знаменитые игроки «Что? Где? Когда?» - эти интеллектуалы выдвигают десятки версий в минуту! Наконец, что делать с Эйнштейном?! Получается, если Кован прав, то и его гениальный мозг, прошу прощения, не имел возможности переступить этот ограничительный порог - в три, ну пять объектов, способных одновременно уместиться в его рабочей памяти.

Полагаю, многие с изрядной снисходительностью относятся к утверждению, что, мол, современный человек обладает тем же, по существу, мозгом, что и кроманьонец или даже неандерталец. Сомневаются, тихонечко подхихикивают, а зря: биологическая эволюция имеет свои законы и не может происходить быстрее, чем она происходит, а десятки и даже сотни тысяч лет для нее - не срок. Теперь представьте себе нехитрый быт кроманьонца и попытайтесь ответить на вопрос: для решения какой-такой насущной задачи ему могло потребоваться одновременно удерживать в рабочей памяти более трех-четырех интеллектуальных объектов? Охота? Рытье землянки? Раскрашивание стен пещеры? Изготовление копья с наконечником из кости животного? Разведение огня? Спаривание? Три-четыре объекта - край!

Больше не нужно и даже опасно: увеличение числа интеллектуальных объектов, нуждающихся в интеграции, замедлило бы скорость реакции, а последняя куда важнее по кроманьонским временам.

Но если наш мозг действительно настолько примитивен, что способен считать, прошу прощения, только до трех (тире - пяти), то как тогда, например, Эйнштейну хватало этой ограниченной опциональности для совершения столь великих открытий, как СТО и ОТО? В чем тут фокус? Дело в том, что интеллектуальные успехи Homo sapiens’a связаны отнюдь не с чудесными мозгами, невесть откуда взявшимся, а с механизмами кодирования информации, которые предоставлены нам культурой. С помощью языка (и сложной системы иных знаков) мы научились кодировать информацию, агрегируя ее в массивные блоки. И там, где у кроманьонца кусок угля в руке, воспоминание об охоте и стена пещеры, у человека, например, понимание феномена «энтропии», «второй закон термодинамики» и «идея необратимости процессов во времени» - не фунт изюму.

Именно в этой способности «упаковывать» большие объемы информации в сжатые блоки (интеллектуальные объекты) - секрет успешности шахматистов-гроссмейстеров, «знатоков» клуба хрустальной совы и того же Эйнштейна. Да, ограничение Кована действует, но гроссмейстер оперирует в своей рабочей памяти не отдельными фигурами, а целыми схемами партий - именно с этой целью им долгие годы оттачиваются навыки шахматной композиции (задачи, этюды и т. д.). «Знаток» точно так же вытаскивает из глубины своей долговременной памяти не отдельные факты, а вереницы представлений, связанных с соответствующим стимульным материалом, и именно этому навыку долго обучается. Наконец, вспомним знаменитые мысленные эксперименты Альберта Эйнштейна, в которых ведь и не сыщешь более трех-пяти объектов: кабина лифта - ускорение - мяч - наблюдатель, поезд - луч прожектора - скорость света - наблюдатель, наблюдатель № 1 - ракета - наблюдатель № 2 и т.д.

Иными словами, проблема решается не количеством объектов, вовлеченных в работу интеллектуальной функции, а их, так сказать, удельным весом - тем, насколько они сложно устроены внутри самих себя.

Тут я позволю себе несколько сократить изложение, поскольку «правило 10 000 часов» уже хорошо известно широкой публике, благодаря очаровательному бестселлеру Малкольма Гладуэлла «Гении и аутсайдеры». Правило простое: 10 000 часов практики (только без дураков, разумеется) в любой сфере - композиторском мастерстве, в рисовании, художественном письме, лечебной работе, шахматах, фигурном катании, программировании и т. д. и т. п. - и вы неизбежно достигаете высшего уровня мастерства. Вопрос в том, зачем мозгу эти 10 000 часов? Поверьте, чтобы просто узнать все, что нужно, чтобы разбираться в соответствующей сфере, достаточно куда меньшего количества времени. Большая часть этой практики необходима для того, чтобы в долговременной памяти человека образовались своего рода интеллектуальные оковалки - увесистые, сложные, объемные интеллектуальные объекты (за описание механики этого процесса Эрик Кандель получил свою Нобелевку).

Да, решая ту или иную профессиональную задачу, эти специалисты «десяти тысяч часов», как и любой другой человек, смогут одновременно размещать в своей рабочей памяти не более трех-пяти объектов, но у них они будут настолько мощными, что результат окажется несопоставимо выше, чем у любого другого новичка-всезнайки. Мощь, сложность, удельный вес этих интеллектуальных объектов, поступающих в распоряжение рабочей памяти, определяется количеством связей, составляющих данную по-анохински «функциональную» систему интеллектуальной функции.

Грубо говоря, по каждому такому пункту - интеллектуальному объекту - этот специалист мог бы, наверное, написать солидную монографию и все равно всего бы не высказал, что знает, понимает, видит.

Теперь представьте себе, что вы, будучи таким специалистом, пытаетесь осмыслить какую-то серьезную исследовательскую проблему, до которой только что добрались - поймали, так сказать, за хвост, предчувствуете правильный ответ, но еще не вытащили его наружу. Ваша рабочая память актуализирует и перебирает один за другим множество интеллектуальных объектов, относящихся к теме; вы их складываете, раскладываете, от чего-то отказываетесь, к чему-то снова возвращаетесь. В конце концов вы остановились на трех-четырех таких «монографиях», и теперь, удерживая все это безобразие в рабочей памяти, вам необходимо, в соответствии с поставленной задачей, сложить их - в уме - в одну, новую книгу.

Сколько нюансов, деталей и особенностей нужно учесть? Огромное множество! Ведь объекты эти сложные, и создавались не под данную задачу, а потому теперь должны быть под нее перестроены. Эта работа ума требует невероятного напряжения и сосредоточенности, времени и воли к истине - качеств, так несвойственных нашей, современной культуре и так ей недостающих. Вот почему я склонен верить байке о том, что Эльза регулярно проверяла, не разгуливает ли ее кузен и по совместительству муж с расстегнутыми штанами. По малой нужде можно ведь сходить и на простом автоматизме, не отвлекаясь от решения интеллектуальной задачи, а вот застегнуть ширинку в подобных обстоятельствах нетрудно и позабыть.

К сожалению, и большинство наших сограждан носятся по информационному пространству с расстегнутыми шароварами, но уже совершенно по другой причине: не от того, что слишком сосредоточены на своей интеллектуальной функции, а, скорее, потому, что более не способны к ней в принципе. Полноценный, качественный интеллектуальный объект нельзя позаимствовать из телевизора, да и вообще из любого внешнего источника информации, а тотальная медиазависимость народонаселения, полагаю, ни для кого не является секретом.

Извне мы способны усвоить только фальсификат интеллектуального объекта - слух, мем, медиавирус, идеологическое клише или штамп.

Собственно интеллектуальный объект нельзя усвоить или присвоить, его можно только создать, причем самостоятельно и внутри собственной головы. Это долгий процесс, когда вы комбинируете множество раз по три-четыре объекта (поначалу небольших, но далее все увеличивающихся), складывая их друг с другом, интегрируя со следующей партией, проворачивая всю эту нарождающуюся махину снова и снова, и опять прорабатывая, добавляя что-то новое (а что-то убирая), возводя в степень и разводя по новым координатам. В конце концов, мы - почти все из нас, за исключением полученных нами в начале этой статьи 10% населения, - способны сформировать в своем мозгу объекты с высоким удельным весом, и только они важны для работы интеллектуальной функции большой мощности.

Но обзавестись фальсификатами, конечно, легче.

До последнего своего патологоанатома я, к счастью, еще не добрался, и, если не считать однокурсников, избравших эту специализацию, «крайний» покамест для меня патологоанатом (и по совместительству судебно-медицинский эксперт) - профессор, читавший у нас соответствующий курс в Военно-медицинской академии. Анатолий Никифорович (если я ничего не путаю) был уже немолод, полковник в отставке - массивный, даже грузный, очевидно рабоче-крестьянского происхождения, с говорком и удивительным военно-патологоанатомическим «черным юмором». Шутил он постоянно и, разумеется, в основном над нами.

Кроме вскрытий и лекций наши так называемые практические занятия посвящались решению судебно-медицинских задач: нам предлагался тот или иной «несчастный случай», а мы должны были дать по нему заключение. Первым всегда вздергивал руку Игорь Негодуйко - долговязый, чрезвычайно эмоциональный украинец с вертким и быстрым умом. Впоследствии Игорь увлекся дианетикой, отчислился из академии и вступил в саентологическую секту Рона Хаббарда (времена были еще те, надо признать). Откуда, впрочем, его не раз изгоняли за излишнюю ретивость, но потом брали обратно. Поговаривают, что сейчас наш Негодуйко эмигрировал и стал большой шишкой в дианетической пирамиде. Не удивлюсь, если в данный момент он выясняет отношения с Томом Крузом.

Негодуйко?! - всякий раз удивлялся Анатолий Никифорович, глядя, как тот, едва прозвучал вопрос, выпрыгивает с места.

Шо?! - удивлялся в ответ Негодуйко.

Не шо, - передразнивал его профессор. - Я тебе говорил, что все гении тугодумы?

Ховорили, и шо?.. Я же знаю шо!

Да не знаешь ты шо, - хмурился Анатолий Никифорович, - садись. Два.

За шо два-то?!

А вот думай!

У патологоанатомов и судебно-медицинских экспертов удивительная врачебная специальность: они не лечат, а только исследуют - скрупулезно, тщательно, факт за фактом. Их работа напоминает работу детектива, восстанавливающего картину происшествия по мельчайшим деталям. Они виртуозы в решении головоломок: как двигался «тупой предмет», проломивший пострадавшему череп, на каком месте в автомобиле находился погибший, перед тем как машина упала в двухсотметровую пропасть, почему у данного бойца «самострел», а не «боевое ранение» и так далее, далее, далее. Они лишены всякого романтизма, потому что, в отличие от любого другого врача, всегда узнают единственно верный ответ (не знаю, что там со Страшным судом, но от справедливости патологоанатомического суда не уйдешь).

Впрочем, подлинное счастье патологоанатома в том, что он может позволить себе быть тугодумом: у него всегда есть время на решение задачи. Да, у Анатолия Никифоровича, как у настоящего патологоанатома, никакого романтизма в голове не было напрочь (знай он о поступке доктора Харви, думаю, катался бы по полу от смеха). И хотя старый профессор так и не рассказал нам, почему «все гении тугодумы», этот главный и крайне важный его урок я запомнил накрепко.

Эльза рассказывала, что Эйнштейн, погруженный в свои мысли, бродил по квартире, совершенно ее не замечая. Он мог уйти в кабинет, потом вдруг вернуться, подойти к роялю, в задумчивости взять несколько нот и снова удалиться в кабинет. Его родственник Давид Марьянов вспоминал, что обед в доме начинался с того, что Эльза с трудом, требовательным тоном отрывала супруга от работы. Эйнштейн появлялся в столовой, погруженный в размышления, и что-то протестующе бормотал себе под нос. Перед ним ставили тарелку с супом, которую он опустошал ритмичными механическими движениями. Он мог выйти под дождь без плаща и шляпы, потом вернуться и долго, неподвижно стоять на лестнице. Берлинский друг ученого Янош Плещ вспоминал об одном, весьма показательном семейном скандале: Эйнштейн вернулся из недельной поездки на конференцию, но вещи в его чемодане оказались чистыми, сложенными аккуратной женской рукой. Эльза, понятное дело, потребовала объяснений, не догадываясь, что этой заботливой рукой была ее собственная. Эйнштейн так и не открыл собранного ею чемодана: был занят - думал.

Можно ли было этот труд обнаружить в выкраденном мозгу Эйнштейна? И нужно ли было так спешно воровать мозг этого милого, пусть и слегка сумасбродного старика, если, чтобы понять механику его гения, достаточно того же самого - просто как следует об этом подумать?

В США на всеобщее обозрение впервые выставлен мозг одного из величайших умов прошлого века, Альберта Эйнштейна. В 55-м, когда он умер, патологоанатом фактически украл мозг учёного, поплатившись за это карьерой. Однако это преступление, прямо по теории Эйнштейна, - оказалось весьма относительным. Если бы не кража, учёным никогда не удалось бы узнать, что же творилось в голове у мыслителя.

Огнеупорный шкаф, в котором хранится мозг знаменитого физика, открывают, как сокровищницу с бесценным артефактом, - в присутствии охраны и до открытия музея, в 7 часов утра. Тонкую стеклянную пластину, на которой так легко читаются извилины, в руки берет доктор Люси Рорк-Адамс - ей принадлежит фанерная коробка с 46-ю срезами головного мозга Эйнштейна.

"Здесь можно увидеть большую часть ткани головного мозга - очень толстый срез", - показывает врач-невропатолог детского госпиталя Филадельфии.

В 70 году невропатолог Люси Рорк-Адамс получила эту коробку в дар от медика, который участвовал в аутопсии Эйнштейна. Такой редкий научный материал был невероятно любопытен - Эйнштейн считался одним из самых гениальных мыслителей XX столетия и заглянуть к нему в голову очень хотелось ученым.

Мозг действительно оказался необычным - он весит гораздо меньше, чем средний мозг взрослого мужчины, плотность нейронов намного выше, сосуды в прекрасном состоянии. Такое впечатление, объясняет Люси Рорк-Адамс, что он принадлежит не пенсионеру, а юноше.

"При изучении слайдов головного мозга Альберта Эйнштейна, мне стало очевидно, что структура мозга и строение клеток экстраординарно, - восхищена Люси Рорк-Адамс. - Ему было 76, когда он умер, но клетки головного мозга и нейроны не имеют признаков старения. Когда мы стареем, клетки нашего организма изменяются, включая нейроны, это заметно по особой пигментации. Его нейроны почти не окрашены, и я такого за свою научную карьеру ни разу не видела - точно его мозг принадлежит подростку".

Эйнштейн скончался в 1955 году от разрыва брюшной аорты. Патологоанатом Томас Харви извлек мозг гения через 7 часов после смерти, во время стандартной процедуры вскрытия, но оставил его себе. Родственники ученого устроили громкий скандал. Широкой публике он представлен впервые.

"Это и выставка и лаборатория - она создавалась профессорским составом для изучения анатомии, и по-прежнему мы предоставляем наши материалы для художников, этнографов, патологоанатомов", - рассказывает президент Медицинского музея Филадельфии Джордж Волрейх.

К портрету Эйнштейна в этой научной лаборатории добавили новые черты. Он оставался пытливым юношей, что подтверждает, в том числе, эта наивная фотография.

Патологоанатом, который проводил вскрытие - Томас Харвей - потерял место в Принстоне, лицензию врача и был вынужден работать до смерти на заводе, после того как был уличен в краже мозга Альберта Эйнштейна. Но благодаря этому врачу-мошеннику, эта украденная часть мозга гения - единственная, что сейчас доступна ученым.

В течение нескольких часов после смерти Альберта Эйнштейна в 1955 году, головной мозг великого ученого был удален хирургическим путем из черепа и помещен в формалин. Вскрытие и события, окружающие его были окутаны завесой секретности и противоречивых сведений.

Мозг извлёк патологоанатом Томас Харви в больнице Принстон, Нью-Джерси, где Эйнштейн жил в последние годы своей жизни. Патологоанатом заявил, что семья Эйнштейна дала ему разрешение держать мозг у себя на неопределенный срок.

Тайна была почти забыта, когда в 1978 году журналист по имени Стивен Леви выследили Томаса Харви в Вичита, штат Канзас. Леви был полон решимости, чтобы получить ответы на некоторые вопросы.

Может быть его удивительный интеллект коррелирует с особенностями анатомии мозга? Ответ не был очевиден. Внешне, мозг Эйнштейна оказался весьма средним по размеру и структуре.

Более детальный анализ показал, что мозг действительно отличался некоторыми признаками от всех остальных. Одним из первых ученых, исследовавших мозг Эйнштейна, была нейробиолог Мэриан Даймонд из университета Беркли.

Даймонд обнаружила, что образец мозга имел гораздо больше глиальных клеток, чем обычно. Глиальные клетки, непосредственно не участвуют в передаче сигналов мозга, а обеспечивают нейроны питательной поддержкой и обслуживанием. Клетки мозга Эйнштейна, кажется, были «сыты».

Другие исследования показали, что мозговая кора головного мозга имела высокую плотность нейронов. Это открытие привело исследователей к предположению, что «увеличение плотности нейронов может быть выгодно для снижения времени проводимости между нейронами», тем самым увеличивается эффективность работы мозга. Другими словами, если нейроны плотно упакованы, они предположительно несут информацию эффективно и с исключительной скоростью.

Дальнейший анализ показал, что мозг Эйнштейна имел необычно большую теменную долю, область, ответственную за познания и создание ментальных образов. Увеличенная теменная доля, кажется, согласуется с собственной гипотезой Эйнштейна о том, как он построил свою теорию относительности. Его мысленные эксперименты включали представления о том, как объекты будут перемещаться со скоростью света. Визуализация дала ему понимание проблемы.

Эйнштейн предусмотрел как объект будет отображаться, если он путешествует вместе с лучом, с той же скоростью. Возможно, его увеличенная теменная доля помогла ему интегрировать ментальные образы в абстракции.

Обладает ли Большой Мозг высоким интеллектом?

Мозг Эйнштейна иллюстрирует некоторые вопросы, которые решают неврологи. Они касаются отношений структуры мозга и функций. Среди самых основных вопросов — является ли большой мозг признаком высокого интеллекта. Данные из исследования эволюции человека наводит на мысль, что больший мозг чрезвычайно помогает в адаптации к враждебной среде. За последние три миллиона лет, средний человеческий мозг увеличился в размерах в три раза, из скромного 500-граммовой мозга австралопитеков к надежному 1500 грамм мозга хомо сапиенс. Это сравнение между двумя различными видами современных людей и их эволюционных предков. Если же мы рассмотрим эффекты размеров мозга в пределах хомо сапиенс, то отклонение от человека к человеку не так четко выражено. Мозг Эйнштейна был не особенно велик. Это говорит нам, что, если существует положительная корреляция между размером мозга и интеллектом, то она может быть только приблизительной.

Человек с IQ в 200 баллов: Альберт Эйнштейн

В более чем 50 исследованиях, начиная с 1906 года, размер головы, длина, периметр и объем, дают слабо прогнозируемые более высокие показатели IQ, с корреляцией 1 г = 0,20. Многие ранние исследования, лишенные технологий изображений мозга, могли давать только приблизительный размер мозга путем измерения размера головы. С изобретением технологий изображений мозга, таких как КТ и МРТ сканирования, стало возможным собирать точные данные по объему мозга и сравнивать эти измерения с IQ. Более точные корреляции между размером мозга и IQ немного различаются, но дают в среднем через исследования г = .38-много выше, чем корреляции между размером головы и IQ. Корреляции действуют с одинаковой силой у самцов и самок.

Изменения в размере мозга на протяжении жизни помогают объяснить, как различные формы интеллекта меняются с возрастом. Напомним, что мозг, как правило, теряет жидкости, когда мы становимся старше. Как правило, люди теряют часть своей способности адаптироваться к новым проблемам, которая является сущностью интеллекта жидкости. С другой стороны, кристаллизация интеллекта в целом продолжает подниматься в течении всей жизни. Общий объем мозга положительно коррелируется с интеллектом жидкости, но не с кристаллизованным интеллектом. Размер мозга несколько уменьшается, кода мы стареем, это может внести свой вклад в снижение интеллекта жидкости, которая является общей в среднем возрасте и последующие годы. Кристаллизованный интеллект вовсе не зависит от спада в общей численности головного мозга, это объясняет, почему он остается стабильным на протяжении жизни.

На строго структурном уровне, соответствие между размером мозга и интеллектом не является чем-то удивительным. Большие мозги есть почти прямая пропорция большого числа нейронов. Нейроны означают большую вычислительную мощность в службе адаптации и выживания. Интеллектуальный мозг любых видов каким-то образом создаёт модель среды, чувственного мира, к которому животное может адаптироваться.

У рептилий, мозг строит этот внутренний мир, прежде всего, через чувство зрения и связанные с ним нейроны.

Более развитые мозги млекопитающих, как правило, поддерживают сенсорное строительство мира через слух, видение и обоняние. У приматов, высокая острота зрения приобретает особое значение в представлении внешнего мира. В то время как более крупные мозги подразумевают большую способность адаптации к окружающей среде, мы не должны игнорировать возможность причинного влияния в обратном направлении, из среды к анатомии. Конечно, всё дело в эволюционном масштабе времени, но даже на уровне индивидуального развития, вполне возможно, что интеллектуально требовательные события приводят к большему объему мозга.



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения