Подпишись и читай
самые интересные
статьи первым!

Целые числа: общее представление.

Отрицательные числа — это числа со знаком минус (−), например −1, −2, −3. Читается как: минус один, минус два, минус три.

Примером применения отрицательных чисел является термометр, показывающий температуру тела, воздуха, почвы или воды. В зимнее время, когда на улице очень холодно, температура бывает отрицательной (или как говорят в народе «минусовой»).

Например, −10 градусов холода:

Обычные же числа, которые мы рассматривали ранее, такие как 1, 2, 3 называют положительными. Положительные числа — это числа со знаком плюс (+).

При записи положительных чисел знак + не записывают, поэтому мы и видим привычные для нас числа 1, 2, 3. Но следует иметь ввиду, что эти положительные числа выглядят так: +1, +2, +3.

Содержание урока

Это прямая линия, на которой располагаются все числа: и отрицательные и положительные. Выглядит следующим образом:

Здесь показаны числа от −5 до 5. На самом деле координатная прямая бесконечна. На рисунке представлен лишь её небольшой фрагмент.

Числа на координатной прямой отмечают в виде точек. На рисунке жирная чёрная точка является началом отсчёта. Начало отсчёта начинается с нуля. Слева от начала отсчёта отмечают отрицательные числа, а справа — положительные.

Координатная прямая продолжается бесконечно по обе стороны. Бесконечность в математике обозначается символом ∞. Отрицательное направление будет обозначаться символом −∞, а положительное символом +∞. Тогда можно сказать, что на координатной прямой располагаются все числа от минус бесконечности до плюс бесконечности:

Каждая точка на координатной прямой имеет своё имя и координату. Имя — это любая латинская буква. Координата — это число, которое показывает положение точки на этой прямой. Проще говоря, координата это то самое число, которое мы хотим отметить на координатной прямой.

Например, точка А(2) читается как «точка А с координатой 2» и будет обозначаться на координатной прямой следующим образом:

Здесь A — это имя точки, 2 — координата точки A.

Пример 2. Точка B(4) читается как «точка B с координатой 4»

Здесь B — это имя точки, 4 — координата точки B.

Пример 3. Точка M(−3) читается как «точка M с координатой минус три» и будет обозначаться на координатной прямой так:

Здесь M — это имя точки, −3 — координата точки M.

Точки можно обозначать любыми буквами. Но общепринято обозначать их большими латинскими буквами. Более того, начало отчёта, которое по другому называют началом координат принято обозначать большой латинской буквой O

Легко заметить, что отрицательные числа лежат левее относительно начала отсчёта, а положительные числа правее.

Существуют такие словосочетания, как «чем левее, тем меньше» и «чем правее, тем больше» . Наверное, вы уже догадались о чём идёт речь. При каждом шаге влево, число будет уменьшаться в меньшую сторону. И при каждом шаге вправо число будет увеличиваться. Стрелка, направленная вправо, указывает на положительное направление отсчёта.

Сравнение отрицательных и положительных чисел

Правило 1. Любое отрицательное число меньше любого положительного числа.

Например, сравним два числа: −5 и 3. Минус пять меньше , чем три, несмотря на то, что пятёрка бросается в глаза в первую очередь, как цифра большая, чем три.

Связано это с тем, что −5 является отрицательным числом, а 3 — положительным. На координатной прямой можно увидеть, где располагаются числа −5 и 3

Видно, что −5 лежит левее, а 3 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что любое отрицательное число меньше любого положительного числа. Отсюда следует, что

−5 < 3

«Минус пять меньше, чем три»

Правило 2. Из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой.

Например, сравним числа −4 и −1. Минус четыре меньше , чем минус единица.

Связано это опять же с тем, что на координатной прямой −4 располагается левее, чем −1

Видно, что −4 лежит левее, а −1 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой. Отсюда следует, что

Минус четыре меньше, чем минус единица

Правило 3. Ноль больше любого отрицательного числа.

Например, сравним 0 и −3. Ноль больше , чем минус три. Связано это с тем, что на координатной прямой 0 располагается правее, чем −3

Видно, что 0 лежит правее, а −3 левее. А мы говорили, что «чем правее, тем больше» . И правило говорит, что ноль больше любого отрицательного числа. Отсюда следует, что

Ноль больше, чем минус три

Правило 4. Ноль меньше любого положительного числа.

Например, сравним 0 и 4. Ноль меньше , чем 4. Это в принципе ясно и так. Но мы попробуем увидеть это воочию, опять же на координатной прямой:

Видно, что на координатной прямой 0 располагается левее, а 4 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что ноль меньше любого положительного числа. Отсюда следует, что

Ноль меньше, чем четыре

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Натуральные числа

Натуральные числа определение - это целые положительные числа. Натуральные числа используют для счета предметов и многих иных целей. Вот эти числа:

Это натуральный ряд чисел.
Ноль натуральное число? Нет, ноль не является натуральным числом.
Сколько натуральных чисел существует? Существует бесконечное множество натуральных чисел.
Каково наименьшее натуральное число? Единица - это наименьшее натуральное число.
Каково наибольшее натуральное число? Его невозможно указать, ведь существует бесконечное множество натуральных чисел.

Сумма натуральных чисел есть натуральное число. Итак, сложение натуральных чисел a и b:

Произведение натуральных чисел есть натуральное число. Итак, произведение натуральных чисел a и b:

с - это всегда натуральное число.

Разность натуральных чисел Не всегда есть натуральное число. Если уменьшаемое больше вычитаемого, то разность натуральных чисел есть натуральное число, иначе - нет.

Частное натуральных чисел Не всегда есть натуральное число. Если для натуральных чисел a и b

где с - натуральное число, то это значит, что a делится на b нацело. В этом примере a - делимое, b - делитель, c - частное.

Делитель натурального числа - это натуральное число, на которое первое число делится нацело.

Каждое натуральное число делится на единицу и на себя.

Простые натуральные числа делятся только на единицу и на себя. Здесь имеется ввиду делятся нацело. Пример, числа 2; 3; 5; 7 делятся только на единицу и на себя. Это простые натуральные числа.

Единицу не считают простым числом.

Числа, которые больше единицы и которые не являются простыми, называют составными. Примеры составных чисел:

Единицу не считают составным числом.

Множество натуральных чисел составляют единица, простые числа и составные числа.

Множество натуральных чисел обозначается латинской буквой N.

Свойства сложения и умножения натуральных чисел:

переместительное свойство сложения

сочетательное свойство сложения

(a + b) + c = a + (b + c);

переместительное свойство умножения

сочетательное свойство умножения

(ab) c = a (bc);

распределительное свойство умножения

A (b + c) = ab + ac;

Целые числа

Целые числа - это натуральные числа, ноль и числа, противоположные натуральным.

Числа, противоположные натуральным - это целые отрицательные числа, например:

1; -2; -3; -4;...

Множество целых чисел обозначается латинской буквой Z.

Рациональные числа

Рациональные числа - это целые числа и дроби.

Любое рациональное число может быть представлено в виде периодической дроби. Примеры:

1,(0); 3,(6); 0,(0);...

Из примеров видно, что любое целое число есть периодическая дробь с периодом ноль.

Любое рациональное число может быть представлено в виде дроби m/n, где m целое число,n натуральное число. Представим в виде такой дроби число 3,(6) из предыдущего примера.

Содержание статьи

Понятие числа в математике может относиться к объектам различной природы: натуральным числам, используемым при счете (положительным целым числам 1, 2, 3 и т.д.), числам, являющимся возможными результатами (идеализированных) измерений (это такие числа, как 2/3, – их называют действительными числами), отрицательным числам, мнимым числам (скажем, к ) и к другим более абстрактным классам чисел, используемым в высших разделах математики (например, к гиперкомплексным и трансфинитным числам). Число необходимо отличать от его символа, или обозначения, которое его представляет. Мы рассмотрим логические отношения между различными классами чисел.

Такие загадки легко разрешаются, если принять во внимание, что различные классы чисел имеют совершенно различный смысл; хотя у них достаточного много общего, чтобы их всех можно было называть числами, не следует думать, что все они будут удовлетворять одним и тем же правилам.

Положительные целые числа.

Хотя мы все усваиваем положительные целые числа (1, 2, 3 и т.д.) в раннем детстве, когда вряд ли приходит в голову задумываться об определениях, тем не менее такие числа могут быть определены по всем правилам формальной логики. Строгое определение числа 1 заняло бы не один десяток страниц, а формула типа 1 + 1 = 2, если записать ее во всех подробностях без каких-либо сокращений, протянулась бы на несколько километров. Однако любая математическая теория вынуждена начинаться с некоторых неопределяемых понятий и аксиом или постулатов относительно них. Так как положительные целые числа хорошо известны и трудно определить их с помощью чего-то более простого, мы примем их за исходные неопределяемые понятия и будем считать, что основные свойства этих чисел известны.

Отрицательные целые числа и нуль.

Отрицательные числа в наши дни вещь обыденная: их используют, например, для того, чтобы представить температуру ниже нуля. Поэтому кажется удивительным, что еще несколько столетий назад какой-либо конкретной интерпретации отрицательных чисел не было, а возникающие по ходу вычислений отрицательные числа назывались «воображаемыми». Несмотря на то, что интуитивная интерпретация отрицательных чисел сама по себе полезна, пытаясь понять такие «правила», как (–4)ґ(–3) = +12, мы должны определить отрицательные числа с помощью положительных. Для этого нам нужно построить множество таких математических объектов, которые будут вести себя в арифметике и алгебре именно так, как можно было бы ожидать от отрицательных чисел. Один из способов построить такое множество состоит в рассмотрении упорядоченных пар положительных чисел (a ,b ). «Упорядоченность» означает, что, например, пара (2,3) отлична от пары (3,2). Такие упорядоченные пары можно рассматривать как новый класс чисел. Теперь мы должны сказать, когда два таких новых числа равны и что означает их сложение и умножение. Наш выбор определений обусловлен желанием, чтобы пара (a ,b ) действовала как разность (a b ), которая пока что определена, лишь когда a больше b . Так как в алгебре (a – b ) + (c – d ) = (a + c ) – (b + d ), мы приходим к необходимости определить сложение новых чисел как (a ,b ) + (c ,d ) = (a + c , b + d ); т.к. (a b )ґ(c d ) = ac + bd – (bc + ad ), мы определяем умножение равенством (a ,b )ґ(c ,d ) = (ac + bd , bc + ad ); а так как (a – b ) = (c – d ), если a + d = b + c , мы определяем равенство новых чисел соотношением (a ,b ) = (c ,d ), если a + d = b + c . Таким образом,

Используя определения равенства пар, можно записать сумму и произведение пар в более простом виде:

Все пары (a ,a ) равны (по определению равенства пар) и действуют так, как по нашим ожиданиям должен действовать нуль . Например, (2,3) + (1,1) = (3,4) = (2,3); (2,3)ґ(1,1) = (2 + 3, 2 + 3) = (5,5) = (1,1). Пары (a ,a ) мы можем обозначить символом 0 (который до сих пор не использовали).

Пары (a ,b ), где b больше a , ведут себя так, как должны были бы действовать отрицательные числа, и мы можем обозначить пару (a ,b ) символом –(b a ). Например, -4 – это (1,5), а -3 – это (1,4); (–4)ґ(–3) = (21,9), или (13,1). Последнее число хотелось бы обозначить как 12, но это заведомо не то же самое, что положительное целое число 12, поскольку обозначает пару положительных целых чисел, а не одно положительное целое число. Необходимо подчеркнуть, что поскольку пары (a ,b ), где b меньше a , действуют как положительные целые числа (a b ), мы будем записывать такие числа как (a b ). При этом надо забыть о положительных целых числах, с которых мы начали, и впредь пользоваться только нашими новыми числами, которые назовем целыми числами . То, что мы намереваемся использовать старые названия для некоторых новых чисел, не должно вводить в заблуждение относительно того, что в действительности новые числа представляют собой объекты иного рода.

Дроби.

Интуитивно мы представляем себе дробь 2/3 как результат разбиения 1 на три равные части и взятия двух из них. Однако математик стремится как можно меньше полагаться на интуицию и определять рациональные числа через более простые объекты – целые числа. Это можно сделать, если 2/3 рассматривать как упорядоченную пару (2,3) целых чисел. Для завершения определения необходимо сформулировать правила равенства дробей, а также сложения и умножения. Разумеется, эти правила должны быть эквивалентны правилам арифметики и, естественно, отличаться от правил для тех упорядоченных пар, которые мы определили как целые числа. Вот эти правила:

Нетрудно видеть, что пары (a ,1) действуют как целые числа a ; продолжая рассуждать так же, как в случае отрицательных чисел, мы обозначим через 2 дробь (2,1), или (4,2), или любую другую дробь, равную (2,1). Забудем теперь о целых числах и сохраним их лишь как средство записи определенных дробей.

Рациональные и иррациональные числа.

Дроби принято также называть рациональными числами, так как они представимы в виде отношений (от лат. ratio – отношение) двух целых чисел. Но если нам потребуется число, квадрат которого равен 2, то мы не сможем обойтись рациональными числами, т.к. не существует рационального числа, квадрат которого равен 2. То же самое выяснится, если поинтересоваться числом, выражающим отношение длины окружности к ее диаметру. Следовательно, если мы хотим получить квадратные корни из всех положительных чисел, то нам необходимо расширить класс рациональных чисел. Новые числа, называемые иррациональными (т.е. не рациональными), можно определять различными способами. Упорядоченные пары для этого не годятся; один из простейших способов состоит в том, чтобы определить иррациональные числа как бесконечные непериодические десятичные дроби.

Действительные числа.

Рациональные и иррациональные числа вместе называются действительными или вещественными числами. Геометрически их можно представить точками на прямой, при этом дроби оказываются в промежутках между целыми числами, а иррациональные числа – в промежутках между дробями, как показано на рис. 1. Можно показать, что система действительных чисел обладает свойством, известным как «полнота» и означающим, что каждой точке на прямой соответствует некоторое действительное число.

Комплéксные числа.

Так как квадраты положительных и отрицательных действительных чисел положительны, на прямой действительных чисел нет точки, соответствующей числу, квадрат которого был бы равен -1. Но если бы мы попытались решать квадратные уравнения типа x 2 + 1 = 0, то необходимо было бы поступать так, как если бы существовало некоторое число i , квадрат которого был бы равен -1. Но поскольку такого числа нет, нам не остается ничего другого, как воспользоваться «воображаемым», или «мнимым», числом. Соответственно, «число» i и его комбинации с обычными числами (типа 2 + 3i ) стали называться мнимыми. Современные математики предпочитают называть такие числа «комплéксными», поскольку они, как мы увидим, столь же «реальны», как и те, с которыми нам уже доводилось встречаться раньше. Долгое время математики свободно пользовались мнимыми числами и получали полезные результаты, хотя не до конца понимали то, что они делали. И до начала 19 в. никому и в голову не приходило «оживить» мнимые числа с помощью их явного определения. Для этого нужно построить некоторую совокупность математических объектов, которые с точки зрения алгебры вели бы себя как выражения a + bi , если условиться, что i 2 = –1. Такие объекты можно определить следующим образом. Рассмотрим в качестве наших новых чисел упорядоченные пары действительных чисел, сложение и умножение которых определяется формулами:

Назовем такие упорядоченные пары комплéксными числами. Пары частного вида (a ,0) со вторым членом, равным нулю, ведут себя как действительные числа, поэтому мы условимся обозначать их так же: например, 2 означает (2,0). С другой стороны, комплексное число (0,b ) по определению умножения обладает свойством (0,b )ґ(0,b ) = (0 – b 2 , 0 + 0) = (–b 2 ,0) = –b 2 . Например, в случае (0,1)ґ(0,1) мы находим произведение (-1,0); следовательно, (0,1) 2 = (–1,0). Мы уже условились записывать комплексное число (-1,0) как -1, поэтому если число (0,1) обозначить символом i , то мы получим комплексное число i , такое, что i 2 = –1. Кроме того, комплексное число (2,3) теперь можно записать в виде 2 + 3i .

Важное отличие такого подхода к комплексным числам от традиционного состоит в том, что в данном случае число i не содержит ничего загадочного или мнимого: оно представляет собой нечто, хорошо определяемое посредством уже существовавших ранее чисел, хотя, разумеется, и не совпадает ни с одним из них. Точно так же, действительное число 2 не является комплексным, хотя мы и используем символ 2 для обозначения комплексного числа. Так как на самом деле в мнимых числах нет ничего «мнимого», то неудивительно, что они широко используются в реальных ситуациях, например в электротехнике (где вместо буквы i обычно используют букву j , так как в электротехнике i – символ для текущего значения силы тока).

Алгебра комплексных чисел во многом напоминает алгебру действительных чисел, хотя имеются и существенные различия. Например, правило для комплексных чисел не выполняется: , поэтому , в то время как .

Сложение комплексных чисел допускает простую геометрическую интерпретацию. Например, сумма чисел 2 + 3i и 3 – i есть число 5 + 2i , которому соответствует четвертая вершина параллелограмма с тремя вершинами в точках 0, 2 + 3i и 3 – i .

Точку на плоскости можно задавать не только прямоугольными (декартовыми) координатами (x ,y ), но и ее полярными координатами (r ,q ), задающими расстояние от точки до начала координат и угол. Следовательно, комплексное число x + iy может быть записано и в полярных координатах (рис. 2,б ). Длина радиуса-вектора r равна расстоянию от начала координат до точки, соответствующей комплексному числу; величина r называется модулем комплексного числа и определяется по формуле . Часто модуль записывают в виде . Угол q называется «углом», «аргументом» или «фазой» комплексного числа. Такое число имеет бесконечно много углов, отличающихся на величину, кратную 360°; например, i имеет угол 90°, 450°, -270°, ј Так как декартовы и полярные координаты одной и той же точки связаны между собой соотношениями x = r cos q , y = r sin q , справедливо равенство x + iy = r (cos q + i sin q ).

Если z = x + iy , то число x – iy называется комплексно сопряженным с z и обозначается n z = re iq . Логарифм комплексного числа re iq , по определению, равен ln r + iq , где ln означает логарифм по основанию e , а q принимает все возможные значения, измеряемые в радианах. Таким образом, комплексное число имеет бесконечно много логарифмов. Например, ln (–2) = ln 2 + ip + любое целое кратное 2p . В общем виде степени можно теперь определить с помощью соотношения a b = e b ln a . Например, i –2i = e –2 ln i . Так как значения аргумента числа i равны p /2 (90°, выраженное в радианах) плюс целое кратное, то число i –2i имеет значения e p , e 3 p , e -p и т.д., которые все являются действительными.

Гиперкомплексные числа.

Комплексные числа были изобретены, чтобы иметь возможность решать все квадратные уравнения с действительными коэффициентами. Можно показать, что на самом деле комплексные числа позволяют сделать гораздо больше: с их введением становятся разрешимыми алгебраические уравнения любой степени даже с комплексными коэффициентами. Следовательно, если бы нас интересовали только решения алгебраических уравнений, то необходимость во введении новых чисел отпала бы. Однако для других целей необходимы числа, устроенные в чем-то аналогично комплексным, но с бóльшим количеством компонент. Иногда такие числа называют гиперкомплексными. Их примерами могут служить кватернионы и матрицы.

Что значит целое число

Итак, рассмотрим, какие числа называют целыми.

Таким образом, целыми будут обозначаться такие числа: $0$, $±1$, $±2$, $±3$, $±4$ и т.д.

Множество натуральных чисел есть подмножеством множества целых чисел, т.е. любое натуральное будет являться целым числом, но не любое целое является натуральным числом.

Целые положительные и целые отрицательные числа

Определение 2

плюс .

Числа $3, 78, 569, 10450$ – целые положительные числа.

Определение 3

являются целые числа со знаком минус .

Числа $−3, −78, −569, -10450$ – целые отрицательные числа.

Замечание 1

Число ноль не относится ни к целым положительным, ни к целым отрицательным числам.

Целыми положительными числами являются целые числа, большие нуля.

Целыми отрицательными числами являются целые числа, меньшие нуля.

Множество натуральных целых чисел являет собой множество всех целых положительных чисел, а множество всех противоположных натуральным числам являет собой множество всех целых отрицательных чисел.

Целые неположительные и целые неотрицательные числа

Все целые положительные числа и число нуль называются целыми неотрицательными числами .

Целыми неположительными числами являются все целые отрицательные числа и число $0$.

Замечание 2

Таким образом, целым неотрицательным числом являются целые числа, большие нуля или равные нулю, а целым неположительным числом – целые числа, меньшие нуля или равные нулю.

Например, целые неположительные числа: $−32, −123, 0, −5$, а целые неотрицательные числа: $54, 123, 0, 856 342.$

Описание изменения величин при помощи целых чисел

Целые числа применяются для описания изменения числа каких-либо предметов.

Рассмотрим примеры.

Пример 1

Пусть в магазине продается какое-то число наименований товара. Когда в магазин поступит $520$ наименований товаров, то число наименований товара в магазине увеличится, а число $520$ показывает изменение числа в положительную сторону. Когда в магазине продастся $50$ наименований товара, то число наименований товара в магазине уменьшится, а число $50$ будет выражать изменение числа в отрицательную сторону. Если в магазин не будут ни привозить, ни продавать товар, то число товара будет оставаться неизменным (т.е. можно говорить о нулевом изменении числа).

В приведенном примере изменение числа товара описывается с помощью целых чисел $520$, $−50$ и $0$ соответственно. Положительное значение целого числа $520$ указывает на изменение числа в положительную сторону. Отрицательное значение целого числа $−50$ указывает на изменение числа в отрицательную сторону. Целое число $0$ указывает на неизменность числа.

Целые числа удобно использовать, т.к. не нужно явное указание на увеличение числа или уменьшение, – знак целого числа указывает на направление изменения, а значение – на количественное изменение.

С помощью целых чисел можно выразить не только изменение количества, но и изменение любой величины.

Рассмотрим пример изменения стоимости товара.

Пример 2

Повышение стоимости, например, на $20$ рублей выражается с помощью положительного целого числа $20$. Понижение стоимости, например, на $5$ рублей описывается с помощью отрицательного целого числа $−5$. Если изменений стоимости нет, то такое изменение определяется с помощью целого числа $0$.

Отдельно рассмотрим значение отрицательных целых чисел как размера долга.

Пример 3

Например, у какого-либо человека есть $5 000$ рублей. Тогда с помощью целого положительного числа $5 000$ можно показать количество рублей, которые у него есть. Человек должен оплатить квартплату в размере $7 000$ рублей, но у него таких денег нет, в таком случае подобная ситуация описывается отрицательным целым числом $−7 000$. В таком случае человек имеет $−7 000$ рублей, где «–» указывает на долг, а число $7 000$ показывает количество долга.

Отрицательные числа располагаются слева от нуля . Для них, как и для положительных чисел, определено отношение порядка , позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля: n + (− n ) = 0 . Оба числа называются противоположными друг для друга. Вычитание целого числа a равносильно сложению с противоположным для него: -a .

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же правилам, что и натуральные, но имеют некоторые особенности.

Исторический очерк

Литература

  • Выгодский М. Я. Справочник по элементарной математике. - М.: АСТ, 2003. - ISBN 5-17-009554-6
  • Глейзер Г. И. История математики в школе . - М.: Просвещение, 1964. - 376 с.

Ссылки

Wikimedia Foundation . 2010 .

  • Отрицательные формы рельефа
  • Отрицательный и положительный нуль

Смотреть что такое "Отрицательные числа" в других словарях:

    Отрицательные числа - действительные числа, меньшие нуля, например 2; 0,5; π и т. п. См. Число … Большая советская энциклопедия

    Положительные и отрицательные числа - (величины). Результат последовательных сложений или вычитаний не зависит от порядка, в котором эти действия производятся. Напр. 10 5 + 2 = 10 +2 5. Здесь переставлены не только числа 2 и 5, но и знаки, стоящие перед этими числами. Согласились… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    числа отрицательные - Числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами. Тематики бухгалтерский учет … Справочник технического переводчика

    ЧИСЛА, ОТРИЦАТЕЛЬНЫЕ - числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами … Большой бухгалтерский словарь

    Целые числа - Множество целых чисел определяется как замыкание множества натуральных чисел относительно арифметических операций сложения (+) и вычитания (). Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из… … Википедия

    Натуральные числа - числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). Существуют два подхода к определению натуральных чисел числа, используемые при: перечислении (нумеровании) предметов (первый, второй,… … Википедия

    ЭЙЛЕРОВЫ ЧИСЛА - коэффициенты Е n в разложении Рекуррентная формула для Э. ч. имеет вид (в символической записи, (E + 1)n + (Е 1)n=0, E0 =1. При этом Е 2п+1=0, E4n положительные, E4n+2 отрицательные целые числа для всех n=0, 1, . . .; E2= 1, E4=5, E6=61, E8=1385 … Математическая энциклопедия

    Отрицательное число - Отрицательное число элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате… … Википедия

    История арифметики - Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия

    Арифметика - Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ … Википедия

Книги

  • Математика. 5 класс. Учебная книга и практикум. В 2 частях. Часть 2. Положительные и отрицательные числа , . Учебная книга и практикум для 5 класса входят в состав УМК по математике для 5-6 классов, разработанного авторским коллективом под руководством Э. Г. Гельфман и М. А. Холодной в рамках…


Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения