Подпишись и читай
самые интересные
статьи первым!

Фотоэлектрический спектральный анализ стали. Атомно-эмиссионный спектральный анализ

Утвержден Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР 23 мая 1967 г. Срок введения установлен

с 01.01.69

Настоящий стандарт распространяется на прямоугольные и круглые таблички для машин и приборов, изготовленные по ГОСТ 12970-67 и ГОСТ 12971-67.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Таблички для машин и приборов по форме и размерам должны соответствовать требованиям ГОСТ 12970-67 и ГОСТ 12971-67.

1.2. Таблички должны изготовляться из тонколистовой холоднокатаной стали по ГОСТ 19904-74, тонколистового алюминиевого сплава по ГОСТ 21631-76, декоративного бумажно-слоистого пластика по ГОСТ 9590-76 и других конструкционных материалов.

1.3. Допуск на толщину табличек устанавливают равным или меньше допуска на толщину исходного материала.

1.4. Лицевая поверхность табличек должна быть без вмятин, неровностей и царапин. Параметр шероховатости лицевой поверхности табличек должен быть не более Ra 2,0 мкм по ГОСТ 2789-73.

1.2-1.4. (Измененная редакция, Изм. № 2) .

1.5. Защитно-декоративные покрытия табличек - по ГОСТ 9.306-85.

1.6. Все надписи на табличках из металла должны быть рельефными (выпуклыми или углубленными), четко видимыми. По согласованию с заказчиком допускается применение плоских надписей для табличек.

Надписи, знаки и изображения на табличках должны быть выполнены способом, обеспечивающим сохранность их как при хранении, так и в процессе эксплуатации изделия, на котором они установлены.

1.7. (Исключен, Изм. № 1) .

1.8. Готовые таблички должны быть приняты техническим контролем предприятия-поставщика. Поставщик должен гарантировать соответствие всех выпускаемых табличек требованиям настоящего стандарта.

2. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

2.1. Таблички перед упаковкой должны быть смазаны с двух сторон нейтральной консервирующей смазкой по технической документации, утвержденной в установленном порядке.

2.2. (Исключен, Изм. № 2) .

2.3. Таблички должны быть завернуты в подпергаментную бумагу по ГОСТ 1760-81 и уложены:

а) таблички размером до 250´200 мм - в ящики из гофрированного картона по ГОСТ 9142-84; масса ящика (брутто) не должна превышать 10 кг;

б) таблички размером более 250´200 мм - в деревянные ящики по ГОСТ 2991-76; масса ящика (брутто) не должна превышать 30 кг.

Примечание. Для внутригородских и других близких перевозок допускается упаковка табличек всех размеров в пачку из плотной бумаги по ГОСТ 2228-81 с крестообразной перевязкой шпагатом.

Масса каждой пачки - не более 10 кг.

(Измененная редакция, Изм. № 1).

2.4. На каждом ящике (пачке) должна быть этикетка, на которой указывается:

а) товарный знак предприятия-изготовителя;

б) условное обозначение таблички;

в) число упакованных табличек;

г) дата выпуска;

д) штамп ОТК;

е) фамилия или номер упаковщика;

ж) дата упаковки;

з) масса нетто.

(Измененная редакция, Изм. № 1).

2.5. При транспортировании упакованные таблички должны быть защищены от атмосферных осадков.

2.6. (Исключен, Изм. № 2) .

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СТАЛЬ

МЕТОД ФОТОЭЛЕКТРИЧЕСКОГО СПЕКТРАЛЬНОГО АНАЛИЗА

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
Минск

Предисловие

1 РАЗРАБОТАН Российской Федерацией, Межгосударственным техническим комитетом МТК 145 «Методы контроля металлопродукции»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 11-97 от 25 апреля 1997 г.)

Наименование государства

Наименование национального органа по стандартизации

Азербайджанская Республика

Азгосстандарт

Республика Армения

Армгосстандарт

Республика Белоруссия

Госстандарт Белоруссии

Республика Казахстан

Госстандарт Республики Казахстан

Российская Федерация

Госстандарт России

Республика Таджикистан

Таджикгосстандарт

Туркменистан

Главная государственная инспекция Туркменистана

Госстандарт Украины

3 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 23 сентября 1997 г. № 332 межгосударственный стандарт ГОСТ 18895-97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г.

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СТАЛЬ

Метод фотоэлектрического спектрального анализа

Steel. Method of photoelectric spectral analysis

Дата введения 1998-01-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает фотоэлектрический спектральный метод определения в стали массовой доли элементов, %:

углерода от 0,010 до 2,0;

серы » 0,002 » 0,20;

фосфора » 0,002 » 0,20;

кремния » 0,010 » 2,5;

марганца » 0,050 » 5,0;

хрома » 0,010 » 10,0;

никеля » 0,010 » 10,0;

кобальта » 0,010 » 5,0;

меди » 0,010 » 2,0;

алюминия » 0,005 » 2,0;

мышьяка » 0,005 » 0,20;

молибдена » 0,010 » 5,0;

вольфрама » 0,020 » 5,0;

ванадия » 0,005 » 5,0;

титана » 0,005 » 2,0;

ниобия » 0,010 » 2,0;

бора » 0,001 » 0,10;

циркония » 0,005 » 0,50.

Метод основан на возбуждении атомов элементов стали электрическим разрядом, разложении излучения в спектр, измерении аналитических сигналов, пропорциональных интенсивности или логарифму интенсивности спектральных линий, и последующем определении массовых долей элементов с помощью градуировочных характеристик.

2 НОРМАТИВНЫЕ ССЫЛКИ

Электрокорундовые абразивные круги с керамической связкой, зернистостью № 50, твердостью СТ-2, размером 300×40×70 мм по ГОСТ 2424 .

Шкурка шлифовальная бумажная типа 2 на бумаге марки БШ-200 (П7) из нормального электрокорунда зернистостью 40 - 60 по ГОСТ 6456 .

Аргон газообразный высшего сорта по ГОСТ 10157 .

Электропечь для сушки и чистки аргона типа СУОЛ-0.4.4/12-Н2-У4.2.

В случае применения вакуумных фотоэлектрических установок используют постоянные электроды-прутки серебряные, медные и вольфрамовые диаметром 5 - 6 мм или вольфрамовую проволоку диаметром 1 - 2 мм длиною не менее 50 мм.

Для воздушных фотоэлектрических установок используют медные прутки марок M00, M1, M2 по ГОСТ 859 и угольные стержни марки С3 диаметром 6 мм и длиной не менее 50 мм.

Для определения массовой доли элементов в прокатной стали применяют вакуумные и воздушные фотоэлектрические установки. Если образец не перекрывает полностью отверстие в штативе вакуумной установки, применяют контактную камеру (см. рисунок 1) или другое приспособление, ограничивающее отверстие в столе штатива.

1 - прокладки; 2 - пластина; 3 - пружина; 4 - контакт

Рисунок 1 - Контактная камера для вакуумного спектрометра

Допускается применение другой аппаратуры, оборудования и материалов, обеспечивающих точность анализа, предусмотренную настоящим стандартом.

5 ПОДГОТОВКА К АНАЛИЗУ

5.1 Подготовку установки к выполнению измерений проводят в соответствии с инструкцией по обслуживанию и эксплуатации установки.

5.2 Градуировку каждой фотоэлектрической установки осуществляют экспериментально при внедрении методики выполнения измерений с помощью стандартных образцов (СО) состава, аттестованных в соответствии с ГОСТ 8.315 .

Допускается применение однородных проб, проанализированных стандартизованными или аттестованными методиками химического анализа.

5.3 При первичной градуировке выполняют не менее пяти серий измерений в разные дни работы фотоэлектрической установки. В серии для каждого СО проводят по две пары параллельных (выполняемых одно за другим на одной поверхности) измерений. Порядок пар параллельных измерений для всех СО в серии рандомезируют. Вычисляют среднее арифметическое значение аналитических сигналов по серии и среднее арифметическое значение аналитических сигналов для пяти серий измерений для каждого СО.

Расчетным или графическим способом устанавливают градуировочные характеристики, которые выражают в виде формулы, графика или таблицы. Градуировочные характеристики используют для определения массовых долей контролируемых элементов непосредственно или с учетом влияния химического состава и физико-химических свойств объекта.

Для установок, сопряженных с ЭВМ, процедура градуировки определяется программным обеспечением. При этом точность результатов анализа должна удовлетворять требованиям настоящего стандарта.

5.4 При повторной градуировке допускается сокращение числа серий до двух.

5.5 В случае оперативной градуировки (получения градуировочных характеристик с каждой партией анализируемых проб) выполняют не менее двух параллельных измерений для каждого СО.

6 ПРОВЕДЕНИЕ АНАЛИЗА

6.1 Условия проведения анализа на фотоэлектрических установках приведены в приложении А (таблицы А.1, А.2).

6.2 Длины волн спектральных линий и диапазон значений массовых долей элементов приведены в приложении А (таблица А.3).

6.3 Выполняют два параллельных измерения значений аналитического сигнала для каждого контролируемого элемента анализируемой пробы в условиях, принятых при градуировке. Допускается выполнять три параллельных измерения.

7 ОБРАБОТКА РЕЗУЛЬТАТОВ

7.1 Если расхождение значений аналитического сигнала, выраженное в единицах массовой доли не более d cx (таблица 1) для двух параллельных измерений и 1,2d cx для трех параллельных измерений, вычисляют среднее арифметическое значение.

Допускается выражать значение аналитического сигнала и расхождений параллельных измерений в единицах шкалы отсчетно-регистрирующего прибора фотоэлектрической установки. В этом случае d cx выражают в единицах шкалы отсчетно-регистрирующего прибора с помощью установленных градуировочных характеристик.

В случае превышения расхождений параллельных измерений допускаемых значений d cx (1,2d cx ) анализ повторяют.

7.2 За окончательный результат анализа принимают среднее арифметическое двух или трех параллельных измерений, соответствующих требованиям 7.1.

7.3 Контроль стабильности результатов анализа

7.3.1 Контроль стабильности градуировочных характеристик для верхнего и нижнего пределов диапазона измерений осуществляют не реже одного раза в смену с помощью СО или однородных проб. Допускается проводить контроль только для верхнего предела или середины диапазона измерений.

Для СО (пробы) выполняют два параллельных измерения аналитического сигнала. Значения аналитического сигнала N выражают в единицах массовой доли или шкалы отсчетно-регистрирующего прибора фотоэлектрической установки.

7.3.2 Если расхождение значений аналитического сигнала для параллельных измерений не превышает d cx (таблица 1), вычисляют среднее арифметическое значение и разность DN = N 0 - , где N 0 - значение аналитического сигнала для СО (пробы), полученное способом, указанным в 5.3.

Таблица 1 - Нормы и нормативы контроля точности

Массовая доля элементов, %

Погрешность результата анализа D, %

Допускаемое расхождение, %

между результатами двух параллельных измерений d cx

между результатами анализа, выполненными в разных условиях d в

между результатами спектрального и химического анализов d п

между результатами воспроизведения характеристик СО, полученных при установлении градуировочных характеристик, и их значениями при контроле стабильности градуировочных характеристик δ ст

Марганец

Алюминий

Молибден

Вольфрам

Цирконий

7.3.3 Если DN превышает допускаемое значение δ ст (таблица 1), измерения повторяют в соответствии с 7.3.1. Если при повторных измерениях DN превышает допускаемое значение, осуществляют восстановление градуировочной характеристики. Порядок восстановления градуировочной характеристики для каждой установки определяется ее аналитическими и конструктивными возможностями.

7.3.4 Внеочередной контроль стабильности осуществляют после ремонта или профилактики фотоэлектрической установки.

7.3.5 При оперативной градуировке контроль стабильности не проводят.

7.3.6 Для установок, сопряженных с ЭВМ, процедура контроля стабильности определяется программным обеспечением. При этом точность результатов анализа должна удовлетворять требованиям настоящего стандарта.

7.4 Контроль воспроизводимости результатов анализа

7.4.1 Контроль воспроизводимости результатов спектрального анализа выполняют определением массовых долей элементов в проанализированных ранее пробах.

7.4.2 Число повторных определений должно быть не менее 0,3 % общего числа определений за контролируемый период.

7.4.3 Воспроизводимость измерений считают удовлетворительной, если число расхождений первичного и повторного анализа, превышающих допускаемое значение d в (таблица 1) составляет не более 5 % числа проконтролированных результатов.

7.5 Контроль правильности результатов анализа

7.5.1 Контроль правильности проводят выборочным сравнением результатов спектрального анализа проб с результатами химического анализа, выполняемого стандартизованными или аттестованными методиками.

7.5.2 Число результатов при контроле правильности должно быть не менее 0,3 % общего числа определений за контролируемый период.

7.5.3 Правильность измерений считают удовлетворительной, если число расхождений результатов спектрального и химического анализа, превышающих допускаемое значение d п (таблица 1), составляет не более 5 % числа проконтролированных результатов.

7.5.4 Допускается выполнять контроль правильности методом спектрального анализа на основе воспроизведения значений массовых долей элементов в СО предприятия.

7.6 При выполнении требований настоящего стандарта погрешность результата анализа (при доверительной вероятности 0,95) не должна превышать предельного значения D (таблица 1).

ПРИЛОЖЕНИЕ А

Условия проведения анализа на фотоэлектрических установках

Таблица А.1

Контролируемый параметр

Воздушные фотоэлектрические установки

Спектрометры ФЭС-1 и ФСПА-У, генераторы ГЭУ-1 и ИВС-28. Дуга переменного тока

ДФС-1ОМ. Генератор ГЭУ-1

МФС-4 и МФС-6. Генератор АРКУС

ДФС-36. Генератор УГЭ-4

Напряжение, В

Режимы генератора:

дуга постоянного тока от 1,5 до 20 А;

дуга переменного тока различной скважности и полярности от 1,5 до 20 А;

низковольтная искра 250 - 300 В;

высоковольтная искра от 7500 до 15000 В;

импульсный разряд большой мощности

Частота, Гц

Сила тока, А

Аналитический промежуток, мм

Ширина выходных щелей, мм

0,04; 0,075; 0,10

Время обжига, с

Время экспозиции, с

Электроды

Используют медные прутки диаметром 6 мм и угольные стержни марки С-3. Стержни затачивают на полусферу с радиусом кривизны 3 - 4 мм либо на усеченный конус под углом 45 - 90° с диаметром площадки 1,5 - 2,0 мм

Таблица А.2

Контролируемый параметр

Вакуумные фотоэлектрические установки

ДФС-41. Генератор ИВС-2. Высоковольтная искра

Поливак Е-600

Генератор Полисурс

Генератор Минисурс П. Низковольтная дуга

Генератор FS 139. Низковольтная дуга

Высоковольтная искра

Низковольтная искра

Напряжение, В

Емкость, мкФ

Индуктивность, мкГн

Частота, Гц

Сопротивление, Ом

Ширина выходных щелей, мм

0,04; 0,075; 0,10

0,038; 0,05; 0,075

Время продувки камеры аргоном, с

Аналитический промежуток, мм

Продувка камеры аргоном, л/мин

Время обжига, с

Время экспозиции, с

Электроды

Используют прутки серебряные, медные и вольфрамовые диаметром 5 - 6 мм, заточенные на конус 90°, или вольфрамовую проволоку диаметром 1 - 2 мм, заточенную на плоскость

Примечание - Параметры выбираются в пределах указанных значений

Таблица A.3

Определяемый элемент

Длина волны определяемого элемента, нм

Мешающий элемент

Диапазон значений массовой доли элементов, %

Железо, вольфрам

Железо, вольфрам

Железо, ванадий

Марганец

Вольфрам

Вольфрам

Вольфрам

Вольфрам

Кобальт, вольфрам

Вольфрам

Вольфрам

Марганец, титан

Ниобий, молибден

Титан, молибден

Ниобий, марганец

Вольфрам

Алюминий

Молибден, цирконий

Углерод, кремний

Молибден

Алюминий

Вольфрам

Вольфрам

Алюминий

Вольфрам

Железо, титан

Вольфрам, ниобий

Титан, железо

Вольфрам

Ванадий, вольфрам

Вольфрам, хром

Вольфрам, железо

Вольфрам, железо

Цирконий

Молибден

Ванадий, молибден, титан

Ниобий, молибден

Церий, молибден, ванадий

Хром, никель

Молибден, ванадий

Церий, мышьяк

Ванадий, цирконий

Линия сравнения

Вольфрам

Кобальт, ванадий

Вольфрам

Линия сравнения

Примечание - Линии подбираются конкретно для аналитической методики в зависимости от их интенсивности, типа фотоэлектрической установки, наложения других линий, возможности размещения выходных щелей на каретках прибора

Ключевые слова: сталь, анализ, фотоэлектрический спектральный метод, проба, аппаратура, материалы, результат, погрешность результатов

РУКОВОДЯЩИЕ ТЕХНИЧЕСКИЕ МАТЕРИАЛЫ


ХИМИЧЕСКОГО И СПЕКТРАЛЬНОГО
AHA ЛИЗA
ОСНОВНЫХ И СВАРОЧНЫХ МАТЕРИАЛОВ В
ХИМНЕФТЕАППАРАТОСТРОЕНИИ

РД РТМ 26-362-80 -
РД РТМ 26-366-80

Взамен РТМ 26-31-70 -
РТМ 26-35-70

Письмом Министерства химического и нефтяного машиностроения от 08.09.1980 г. № 11-10-4/1601

от 08.09. 1980 г. № 11-10-4/1601 срок введения установлен с 01.10.1980 г.

Настоящие руководящие технические материалы распространяются на химические и физические методы исследования химсостава основных и сварочных материалов, применяемых в химическом и нефтяном машиностроении (кроме защитных газов).

Устанавливают типовые методы исследования материалов, имеющих различную основу, методы подсчета результатов и технику безопасности.

РД РТМ 26-366-80

РУКОВОДЯЩИЙ ТЕХНИЧЕСКИЙ МАТЕРИАЛ

УСКОРЕННЫЕ И МАРКИРОВОЧНЫЕ МЕТОДЫ
ХИМИЧЕСКОГО И СПЕКТРАЛЬНОГО АНАЛИЗА
ОСНОВНЫХ И СВАРОЧНЫХ МАТЕРИАЛОВ В
ХИМНЕФТЕАППАРАТОСТРОЕНИИ

СПЕКТРАЛЬНЫЕ МЕТОДЫ АНАЛИЗА СТАЛЕЙ

Настоящий руководящий технический материал распространяется на проведение контроля химического состава углеродистых, легированных, конструкционных и высоколегированных сталей, а также материалов сварных швов на основные маркировочные и легирующие элементы методом спектрального анализа.

1. ОБЩИЕ ТРЕБОВАНИЯ К МЕТОДАМ АНАЛИЗА

1.2. Состояние поставки эталонов (в качестве которых используют ГСО ИСО ЦНИИЧМ, а также вторичные производственные СОП) и проб должно быть одинаковым.

1.3. Массы эталонов и проб не должны отличаться значительно и должны быть не менее 30 г.

1.4. Чистота заточки поверхности эталонов и проб должна быть Rz20.

2. ФОТОГРАФИЧЕСКИЕ МЕТОДЫ

2.1. Определение хрома, никеля, марганца, кремния в углеродистых сталях.

2.1.1. Назначение

Методика предназначена для определения хрома, никеля, марганца, кремния в сталях марок Ст. 3, Ст. 5 и др. по ГОСТ 380-71 , в сталях марок 20, 40, 45 и др. по ГОСТ 1050 -74.

Кварцевый спектрограф средней дисперсии типа ИСП-22, ИСП-28 или ИСП-30.

Генератор дуги типа ДТ-2.

Генератор искры типа ИГ-3.

Микрофотометр МФ-2 или МФ-4.

Спектропроектор ПС-18.

Точильный станок с электрокорундовыми кругами зернистости № 36-64.

Набор напильников (для заточки эталонов и проб).

Устройство или приспособление для заточки металлических и угольных электродов.

Комплекты ГСО ИСО ЦНИИЧМ - 12; 53; 76; 77 и их заменяющие.

Постоянные электроды-прутки Æ от 6 до 8 мм из электролитической меди марки M - I по ГОСТ 859-78 и прутки Æ 6 мм из спектрально чистых углей марки C 1 , С 2 , С 3 .

Фотопластинки «спектральные», тип I, II.

Гидрохинон (парадиоксибензол) по ГОСТ 19627-74 .

Натрий сернистокислый (натрий сульфит) кристаллический по ГОСТ 429-76.

Метол (пара-метиламинофенолсульфит) по ГОСТ 5-1177-71.

Натрий углекислый безводный по ГОСТ 83-79 .

Аммоний хлористый по ГОСТ 3773-72 .

Натрий серноватистокислый (тиосульфат натрия) по ГОСТ 4215-66.

С торцевой поверхности пробы стали при помощи наждачного круга снимается слой 1 мм, затем проба затачивается напильником, качество поверхности должно быть не менее, чем Rz20. Медные электроды затачиваются на конус 90°, скругленный радиусом от 1,5 до 2,0 мм. Угольные электроды затачивают на усеченный конус с диаметром площадки от 1,0 до 1,5 мм. Источник света фокусируют на щель спектрального аппарата с помощью кварцевого конденсора с фокусным расстоянием 75 мм или трехлинзовой системы освещения. Установка линз производится на расстояниях, указанных в паспорте к спектрографу. Ширина щели спектрального аппарата от 0,012 до 0,015 мм.

2.1.4. Источник возбуждения спектра

В качестве источников возбуждения спектра используются дуга переменного тока (генератор ДГ-2) и высоковольтная искра (генератор ИГ-3). Основные параметры разрядного контура приведены (в табл. , ).

Таблица 1

Дуга переменного тока

Таблица 2

Высоковольтная искра

Величина параметров контура

Емкость, мкФ

Индуктивность, мкГ

Аналитический промежуток, мм

От 1,5 до 2,0

Схема «сложная»

Анализ проводят методом «трех эталонов» или фотометрического интерполирования, описанных в руководствах по спектральному анализу. Заточенные электроды, эталоны, пробы устанавливают в штатив. С помощью теневой проекции устанавливают составляющий аналитический промежуток. Съемку спектров производят с предварительным обжигом 10 с для дуги переменного тока и от 30 до 40 с для высоковольтной искры. Экспозицию выбирают в зависимости от чувствительности фотоматериалов (почернения аналитических пар должны лежать в области «нормальных»; для фотопластинок тип I область «нормальных» почернений составляет от 0,4 до 2,0). Спектры эталонов и проб фотографируют не менее 3 раз без ослабителя по методу «трех эталонов» и через 9-ступенчатый ослабитель по методу фотометрического интерполирования.

По окончании съемки фотопластинку обрабатывают в стандартном проявителе (раствор А и Б перед проявлением сливается в равных пропорциях).

Раствор А; готовят следующим образом: 1 г метола, 26 г натрия сернистокислого, 5 г гидрохинона, 1 г калия бромистого растворяют в 500 см 3 воды.

Раствор Б; готовят следующим образом: 20 г натрия углекислого растворяют в 500 см 3 воды.

Время проявления указывается на пачках фотопластинок, температура раствора должна быть от 18 до 20 °С. После проявления фотопластинку следует ополоснуть в воде или стоп-растворе (2,5 %-ный раствор уксусной кислоты), отфиксировать.

Фиксаж готовят следующим образом: 200 г натрия серноватистокислого; 27 г аммония хлористого растворяют в 500 см 3 дистилированной воды.

После фиксирования фотопластинку тщательно промывают в проточной холодной воде и сушат.

В случае метода «трех эталонов» обработка спектрограмм производится на микрофотометре МФ-2 или МФ-4. Щель микрофотометра от 0,15 до 0,25 мм, в зависимости от ширины спектральных линий. При методе фотометрического интерполирования оценка содержания анализируемых элементов производится визуально на спектропроекторе ПС-18.

2.1.7. Аналитические линии

а) дуговое возбуждение:

Cr 267,7 - Fe 268,3

Ni 305,0 - Fe 305,5

Mn 293,3 - Fe 292,6

Si 250,6 - Fe 250,7

б) искровое возбуждение:

Cr 267,7 - Fe 268,9

Ni 341,4 - Fe 341,3

При использовании метода «трех эталонов» градировочные графики строят в координатах ( D S , lg С ), при методе фотометрического интерполирования соответственно в

где D S - разность почернений определяемого элемента и линий сравнения железа;

lg С - логарифм концентрации;

J эл - интенсивность линии определяемого элемента;

J Fe - интенсивность линий железа.

Квадратичная ошибка воспроизводимости в зависимости от определяемой концентрации составляет от 2 до 5 %.

2.2. Определение хрома, никеля, марганца, кремния, меди, ванадия, молибдена, алюминия, вольфрама, бора в легированных конструкционных сталях

2.2.1. Назначение

Методика предназначена для определения хрома, никеля, марганца, кремния, алюминия, меди, ванадия, молибдена, вольфрама и бора в сталях марок 40Х, 15XM, 38ХМЮА и др. по ГОСТ 4543-71 .

2.2.2. Аппаратура, вспомогательное оборудование, материалы, реактивы

Для проведения анализа необходимы оборудование и аппаратура, указанные в п. . При определении бора целесообразнее использовать приборы большой дисперсии типа СТЭ-1, который надежно разрешает линии В 249,6 нм и Fe 249,7 нм. В качестве эталонов можно использовать комплекты ГСО ИСО ЦНИИЧМ - 20, 21, 22, 28, 29, 32, а также производственные МОП, многократно проанализированные различными химическими лабораториями. Остальные материалы, а также реактивы для обработки спектрограмм те же, что и при анализе сталей углеродистых (см. п. ).

2.2.3. Подготовка к анализу

Подготовку проб стали к анализу, установку пробы в штатив производят также, как описано в п. . Система освещения 3-линзовая или однолинзовая, линзы устанавливаются на расстояниях, указанных в паспорте к спектрографу. Ширина щели спектрального аппарата от 0,012 до 0,015 мм. При анализе бора при использовании спектрографов средней дисперсии типа ИСП-30 ширина щели должна составлять от 0,005 до 0,007 мм. Постоянные электроды из меди затачивают, как описано в п. . и используют при дуговом возбуждении. Спектрально чистые угольные электроды (см. п. ) применяют при определении нижеприводимых элементов в высоковольтной искре.

2.2.4. Источник возбуждения спектра

В качестве источника возбуждения спектра используются дуга переменного тока (генератор ДТ-2) и высоковольтная искра (генератор ИГ-3). Основные параметры разрядного контура приведены (в табл. , ).

2.2.5. Проведение анализа

Анализ проводят методом «трех эталонов».

Установку электродов, проб, эталонов (ГСО ИСО ЦНИИЧМ СОП) описано в п. .

Время предварительного обыскривания для дуги переменного тока 10 с и от 30 до 40 с, для высоковольтной искры от 30 до 40 с.

Эталоны и пробы фотографируют не менее трех раз, экспозицию выбирают в зависимости от чувствительности фотоматериалов. Обработку фотопластинок производят в проявителе и фиксаже того же состава, что и в п. .

Таблица 3

Дуга переменного тока

Величина параметров

Определяемый элемент

Ток дуги, А

Хром, марганец алюминий, ванадий, вольфрам,

Фаза поджига, град

молибден, никель

Аналитический промежуток, мм

От 1,5 до 2,0

Таблица 4

Высоковольтная искра

Величина параметров

Определяемый элемент

Емкость, мкф

Хром, никель, ванадий, молибден, медь, кремний, марганец

Индуктивность, мкГ

Количество цугов за полупериод питающего тока

Задающий искровой промежуток, мм

Аналитический промежуток, мм

Схема «сложная»

2.2.6. Фотометрирование

Измерение почернений на фотопластинке производят на микрофотометре МФ-2 или МФ-4. Ширину щели микрофотометра устанавливают в пределах от 0,15 до 0,25 мм в зависимости от ширины спектральной линии.

2.2.7. Аналитические линии

Для концентраций, указанных в (табл. ) рекомендуются аналитические пары линий с использованием дугового и искрового возбуждений.

Таблица 5

дуга переменного тока

высоковольтная искра

Mn 293,3 - Fe 292,6

Mn 293,3 - Fe 293,6

От 0,100 до 2,900

Cr 267,7 - Fe 268,3

Cr 267,7 - Fe 268,9

От 0,100 до 2,000

Ni 305,0 - Fe 305,5

Ni 239,4 - Fe 239,1

От 0,300 до 2,000

Mo 317,0 - Fe 320,5

Mo 281,6 - Fe 281,8

От 0,100 до 1,000

V 311,0 - Fe 311,6

V 311,0 - Fe 308,3

От 0,100 до 0,700

Si 250,6 - Fe 250,7

Si 251,6 - Fe 251,8

От 0,100 до 0,800

Al 309,2 - Fe 309,4

Al 308,2 - Fe 308,3

От 0,400 до 1,500

W 239,7 - Fe 239,8

От 0,400 до 2,000

B 249,6 - Fe 249,7

От 0,003 до 0,100

Cu 327,3 - Fe 328,6

От 0,200 до 0,600

2.2.8. Построение градуировочного графика

Графики строят в координатах ( D S , lg С ) (см. п. ).

2.2.9. Ошибка воспроизводимости

Стандартная (квадратичная) ошибка воспроизводимости составляет от 2 до 5 % в зависимости от определяемой концентрации.

Примечание . Проба, поставляемая на анализ, должна отвечать требованиям, изложенным в п. .

2.3. Отделение хрома, никеля, марганца, кремния, молибдена, ванадия, ниобия, титана, алюминия, меди в высоколегированных сталях

2.3.1. Назначение

Методика предназначена для определения хрома, никеля, марганца, кремния, молибдена, ванадия, ниобия, титана, алюминия, меди в сталях марок 12X18H9, 12X18H9 T , 12X 18 H10T , 10 X17H 13 M2T , 10Х17Н13М3Т, 08Х18Н12Б и др. по ГОСТ 5949-75 .

2.3.2. Аппаратура, вспомогательное оборудование, материалы реактивы

Для проведения анализа необходимы те же аппаратура, оборудование, материалы, реактивы, что и в п. .

2.3.3. Подготовка к анализу

Пробу стали затачивают при помощи напильника. Качество поверхности должно быть не менее Rz20. Электроды медные и угольные затачивают по форме, описанной в п. . Затем производят фокусировку источника на щель с помощью кварцевого конденсатора или 3-линзовой системы освещения; линзы устанавливают так как указано в п. . Ширина щели спектрографа должна составлять 0,012 мм.

2.3.4. Источник возбуждения спектра

В качестве источника возбуждения спектра используются дуга переменного тока (генератор ДГ-2) и высоковольтная искра (генератор ИГ-3). Основные параметры разрядного контура приведены (в таблице , ).

Таблица 6

Дуга переменного тока

Таблица 7

Высоковольтная искра

Величина параметров

Определяемый элемент

Емкость, мкФ

Хром, никель, молибден, марганец, ванадий, ниобий, титан медь

Индуктивность, мкГ

Количество цугов за полупериод питающего тока

Вспомогательный промежуток, мм

Аналитический промежуток, мм

От 1,5 до 2,0

Схема «сложная»

2.3.5. Проведение анализа

Анализ проводят методом «трех эталонов». Установку электродов, эталонов и проб в штативе производят так, как описано в п. . Аналитический промежуток устанавливают по шаблону или теневой проекции в зависимости от системы освещения. Каждую пробу и эталоны экспонируют не менее трех раз, с предварительным обыскриванием 10 с для дуги переменного тока, для высоковольтной искры от 30 до 40 с. Экспозицию выбирают в зависимости от чувствительности фотоматериала. Обработку экспонированной пластинки производят в стандартном проявителе и закрепителе составов, приведенных в п. .

2.3.6. Аналитические линии

Для концентраций, указанных (в табл. ) рекомендуются аналитические пары линий.

Таблица 8

Пределы определяемых концентраций, %

Cr 279,2 - Fe 279,3

От 14,0 до 25,0

Cr 314,7 - Fe 315,4

Ni 341,4 - Fe 341,3

От 6,0 до 14,0

Ni 301,2 - Fe 300,9

Mo 281,6 - Fe 283,1

От 1,5 до 4,5

V 311,0 - Fe 308,3

От 0,5 до 2,0

Nb 319,4 - Fe 3319,0

От 0,3 до 1,5

Ti 308,8 - Fe 304,7

От 0,1 до 1,0

Mn 293,3 - Fe 293,6

От 0,3 до 2,0

Si 250,6 - Fe 250,7

От 0,3 до 1,2

Cu 327,3 - Fe 346,5

От 0,1 до 0,6

2.3.7. Фотометрирование и построение градуировочного графика

Фотометрирование производят на микрофотометре МФ-2, МФ-4, ширина щели указывается в п. . График строят в координатах ( D S , lgC ) (см. п. ), концентрацию элементов в пробах определяют по градуировочному графику.

2.3.8. Ошибка воспроизводимости

Стандартная (квадратичная) ошибка воспроизводимости в зависимости от концентрации и определяемого элемента составляет от 1,8 до 4,5 %.

Примечания :

1. Проба, поставляемая на анализ, должна удовлетворять требованиям, изложенным в п. .

2. Рекомендуется применение алюминиевых электродов, которые, как показали результаты исследований, проведенных во ВНИИПТхимнефтеаппаратуры, обеспечивают высокую точность и воспроизводимость при форме заточки, описанной в п. .

3. Анализ высоколегированных сталей целесообразно производить в нестандартном источнике возбуждения спектра - высокочастотной искре. Исследования показали, что высокочастотная искра обеспечивает точность определения от 2 до 3 % при анализе высоких концентраций, пятна обыскривания в диаметре имеют размер от 2 до 3 раз меньший по сравнению с высоковольтной конденсированной искрой, что позволяет проводить анализ сварочных проволок малого диаметра, малогабаритных и многослойных сварных швов.

3. ФОТОЭЛЕКТРИЧЕСКИЕ МЕТОДЫ

3.1. Назначение

Методики предназначены для определения хрома, марганца, ванадия, молибдена, титана в высоколегированных сталях марок X18H9, X18H10T, Х18Н11Б, Х20H10M2 T , Х20Н10М3Т и др., а также для определения молибдена, ванадия, марганца, хрома в легированных конструкционных сталях.

3.2. Аппаратура, вспомогательное оборудование, материалы

Фотоэлектрический стилометр ФЭС-1.

Штатив ШТ-16.

Электронный генератор ГЭУ-1.

Точильный станок, набор напильников, устройство или приспособление для заточки электродов.

Комплекты ГСО ИСО ЦНИИЧМ: 9, 27, 45, 46, 94, 29, 21, 32-й и другие, их заменяющие, а также «вторичные» производственные СОП.

Постоянные электроды диаметром 8 мм из электролитической меди марки M-1 по ГОСТ 859-78.

3.3. Подготовка к анализу

Легированные конструкционные стали затачиваются на точильном станке, с торцевой поверхности эталона и пробы. При помощи наждачного камня снимается слой 1 мм, затем заточка производится напильником. Высоколегированные стали затачиваются напильником. Качество обработки поверхности должно быть не менее Rz20. Медные электроды затачивают по форме, описанной в п. . Источник света фокусируют на щель фотоэлектрического стилометра ФЭС-1 растровым конденсором. Вывод источника на оптическую ось, установку растрового конденсора производят согласно описанию прибора.

3.4. Источник возбуждения спектра

В качестве источника возбуждения спектра используется дуга переменного тока с электронным управлением (генератор ГЭУ-1) при различных токах, фаза поджига 90 град, аналитический промежуток составляет 1,5 мм.

3.5. Проведение анализа

Анализ проводят по методу «трех эталонов».

Заточенные эталоны, пробы, электроды помещают в штатив ШТ-16, устанавливают аналитический промежуток 1,5 мм так, как описано в руководстве по эксплуатации ФЭС-1, включают дугу и производят экспонирование с предварительным обжигом 10 с. В качестве линии сравнения используют неразложенный свет. Условия накопления и измерения, а также остальные условия анализа приводятся (в таблице ).

3.6. Построение градуировочного графика

График строят в координатах n , lgC

где n - показание подвижной шкалы потенциометра;

lgC - логарифм концентрации.

Концентрацию элементов в пробе определяют по градуировочному графику.

3.7. Ошибка воспроизводимости

Таблица 9

Величина дуги, А

Ширина входной щели, мкм

Ширина выходной щели, мкм

Номер фильтра

Условия накопления и измерения

Уровень сигнала неразложенного света

Аналитические линии, нм

Титан в нержавеющих сталях

От 0,2 до 1,0

Ниобий в нержавеющих сталях

От 0,3 до 1,5

Молибден в нержавеющих сталях

От 1,5 до 4,5

без фильтра

От 0,7 до 1,5

Молибден в конструкционных сталях

От 0,1 до 0,7

Ванадий в нержавеющих сталях

От 0,8 до 2,5

Ванадий в конструкционных сталях

От 0,1 до 0,8

Марганец в нержавеющих сталях

От 0,4 до 2,0

Марганец в среднелегированных и конструкционных сталях

От 0,2 до 2,0

Хром в нержавеющих сталях

без фильтра

Хром в среднелегированных конструкционных сталях

От 0,3 до 15

без фильтра

Квадратичная ошибка воспроизводимости в зависимости от определяемой концентрации и элемента составляет от 1,5 до 2,5 %.

4. ПРАВИЛА БЕЗОПАСНОСТИ ПРИ РАБОТЕ В СПЕКТРАЛЬНОЙ ЛАБОРАТОРИИ

4.1. Общие положения:

впервые приступивший к работе лаборант-спектроскопист может начать работу лишь после получения инструктажа по технике безопасности у заведующего спектральной лабораторией, непосредственно на рабочем месте;

после десятидневного дублирования работы (с опытным спектроскопистом) проводят повторный инструктаж;

к самостоятельной работе допускается квалификационный комиссией после проверки знаний;

повторный инструктаж проводят не реже двух раз в год;

проведение инструктажа и разрешение на самостоятельную работу каждый раз заносят в контрольный журнал с оформлением подписями зав. лабораторией и получившего инструктаж;

лаборант-спектроскопист должен знать как общие, так и предусматриваемые инструкцией, правила по ТБ. Несоблюдение правил влечет за собой меры административного взыскания, а в более тяжелых случаях - привлечение к судебной ответственности.

4.2. Правила безопасности при подготовке источников возбуждения к работе:

напряжение генератора (искрового) порядка 15000 В является опасным для жизни человека, категорически запрещается включать генератор не опробованный и не проверенный старшим по смене;

перед включением генератора необходимо проверить правильность схемы включения, что следует делать только при отключении его от сети. Осмотр приборов следует производить только при отключенной сети генератора;

генератор считают подготовленным к работе тогда, когда проверены:

исправность проводов первичной и вторичной цепи,

наличие заземления его корпуса,

исправность выключателя, помещенного на пульте управления генератора,

правильность подключения электрода,

заземление рельса оптического прибора, при невыполнении хотя бы одного из этих пунктов, включать генератор запрещается;

повреждения первичной или вторичной цепи генератора устраняет дежурный электрик;

заземляющие провода следует подключать только к капитальным шинам заземления.

4.3. Правила безопасных приемов работы:

при управлении работой генератора следует стоять на резиновом диэлектрическом коврике;

нельзя касаться электродов при включении генератора;

горячие электроды брать только пинцетом;

при использовании штативов открытого типа, фотографирование спектра производить только в защитных очках;

при отсутствии вытяжной вентиляции в помещении, работать с источником возбуждения запрещается;

исправлять генератор можно только отключив его от сети;

при работе на генераторе с конденсированной искрой в помещении должно быть не менее двух человек, включая работающего;

фотометрирование проводить в затемненной комнате, чередуя с фотографированием;

все операции по подготовке пробы, связанные с выделением газов, производить под вытяжкой;

оставляя помещение, необходимо выключить общий рубильник, дверь помещения закрыть на ключ.

4.4. Правила безопасности при заточке электродов и проб:

к заточке электродов можно приступить только после получения инструктажа;

наждачный камень должен находиться только в защитном кожухе;

наждачный станок должен быть заземлен;

работать на вибрирующем наждачном круге запрещается;

зазор между подручником и кругом не должен превышать 2 - 3 мм;

при работе нужно стоять сбоку, а не против наждачного круга;

работать на наждачном круге следует в защитных очках;

мелкие затачиваемые пробы необходимо удерживать ручными тисками или специальными зажимами;

наждачный станок должен быть хорошо освещен.

ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНЫЙ ИНСТИТУТ ТЕХНОЛОГИИ ХИМИЧЕСКОГО И НЕФТЯНОГО АППАРАТОСТРОЕНИЯ (ВНИИПТхимнефтеаппаратуры)

СОГЛАСОВАНО:

Всесоюзный научно-исследовательский и проектно-конструкторский институт нефтяного машиностроения (ВНИИнефтемаш)

Специальное проектно-конструкторское и технологическое бюро химического и нефтяного машиностроения (СКТБХиммаш)

Список литературы

1. Гиллебранд В.Ф. Практическое руководство по неорганическому анализу, Госхимиздат, Москва, 1957.

2. Дымов A . M. Технический анализ. М., «Металлургия», 1964.

3. Степин В.В., Силаева Е.В. и др. Анализ черных металлов, сплавов и марганцевых руд. М., Изд-во черной и цветной металлургии, 1964.

4. Теплоухов В.И. Экспресс-анализ стали. М., Изд-во черной и цветной металлургии, 1961.

5. Пешкова В.М., Громова М.И. Практическое руководство по спектрофотометрии и колориметрии. М., Изд-во МГУ , 1965.

6. Химический и спектральный анализ в металлургии. Практическое руководство. М., «Наука», 1965.

7. Конкин В.Д., Клемешов Г.А., Никитина О.И. Методы химического, физико-химического и спектрального анализа сырья, металла и шлака на металлургических заводах. Харьков, Изд-во черной и цветной металлургии, 1961.

8. Бабко А.К., Марченко А.В., Фотометрический анализ. Методы определения неметаллов, М., «Химия», 1974.

9. Шарло Г., Методы аналитической химии. Количественный анализ неорганических соединений, М., «Химия», 1966.

10. Редкоземельные элементы. Изд-во Академии наук СССР, Москва, 1963.

11. Сендел Е. Колориметрические методы определения следов металлов, Изд-во «Мир», Москва, 1964.

12. Коростелев П.П. Реактивы и растворы в металлургическом анализе. Москва, Изд-во «Металлургия», 1977.

13. Редкоземельные элементы. Изд-во Академии наук СССР, Москва, 1963.

14. Васильева М.Т., Малыкина В.М. и др. Анализ бора и его соединений, М., Атомиздат, 1965.

15. Конкин В.Д., Жихарева В.И. Комплексонометрический анализ, Издательство «Техника», Киев, 1964.

16. Еремин Ю.Г., Раевская В.В. и др. «Заводская лаборатория», 1964, № 12.

17. Еремин Ю.Г., Раевская В.В., Романов П.Н. Известия высших учебных заведений. «Химия и химическая технология», т. IX, вып. 6, 1966.

18. Еремин Ю.Г., Раевская В.В., Романов П.Н. «Журнал аналитической химии», 1966, т. XXI, 11, стр. 1303

19. Еремин Ю.Г., Раевская В.В., Романов П.Н. «Заводская лаборатория», 1962, № 2.

Определяемый элемент

Наименование метода анализа

Текущие затраты

Капитальные вложения

Приведенные затраты

Кулонометрический

Кулонометрический

Газообъемный

Фосфор в углеродистых сталях

Фотоколориметрический

Фотоколориметрический

Объемный

Фосфор в легированных сталях

Титриметрический

Экстракционно-фотометрический

Фотометрический

Метод с массовой долей вольфрама

Экстракционно-фотометрический

Кремний в легированных сталях

Фотометрический

Фотоколориметрический

Гравиметрический

Кремний в углеродистых сталях

Весовой серноазотнокислотный

Фотоколориметрический

Весовой солянокислотный

Весовой хлорнокислотный

Фотоколориметрический

Никель в легированных сталях

Весовой метод

Дифференциальный спектрофотометрический

Медь в легированных сталях

Экстракционно-фотометрический

Фотоколориметрический

Фотометрический

Полярографический

Титриметрический

Гравиметрический

Атомно-абсорбционный

Цирконий в легированных статьях

Весовой купферронофосфатный

Фотоколориметрический

Молибден в легированных сталях

: Весовой плюмбатный

Фотоколориметрический

Фотоколориметрический

Ванадий в легированных сталях

Объемный метод

Фотоколориметрический

Потенциометрический

Алюминий в легированных сталях

Весовой с электролизом

Фотоколориметрический

Весовой фторидный

Кобальт в легированных сталях

Фотометрический (0,1 - 0,5 %)

Фотоколориметрический

Фотометрический (0,5 - 3,0 %)

Мышьяк в углеродистых сталях

Объемный

Фотоколориметрический

Фотоколориметрический

Бор в легированных сталях

Колориметрический с хинализарином

Экстракционно-фотометрический

Колориметрический с кармином

Потенциометрический

Ниобий в легированных сталях

Весовой гидролитический

Фотоколориметрический

Весовой с таннином

Фотоколориметрический

Фотоколориметрический роданидный

Церий в легированных сталях

Фотоколориметрический

Фотоколориметрический

Примечания к приложению:

текущие затраты на выполнение одного анализа складываются из суммы зарплаты лаборантов, амортизации на оборудование, занятого при выполнении анализа и стоимости химических реактивов, применяемых для одного анализа;

капитальные вложения включают в себя стоимость оборудования, относимого на выполнение одного анализа;

приведенные затраты включают в себя текущие затраты и капвложения, умноженные на нормативный коэффициент, равный 0,15.

Наименование документа ГОСТ 18895-97 Сталь. Метод фотоэлектрического спектрального анализа
Дата начала действия 01.01.2000
Дата принятия 25.12.1998
Статус Действующий
На замену ГОСТ 18895-81
Утверждающий документ Приказ от 25.12.1998 № 1018
Вид документа ГОСТ (Межгосударственный стандарт)
Шифр документа 18895-97
Разработчик
Принявший орган Межгосударственный технический комитет МТК 145 «Методы контроля металлопродукции»

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СТАЛЬ
МЕТОД ФОТОЭЛЕКТРИЧЕСКОГО СПЕКТРАЛЬНОГО АНАЛИЗА

ГОСТ 18895-97

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
Минск

Предисловие

1 РАЗРАБОТАН Российской Федерацией, Межгосударственным техническим комитетом МТК 145 «Методы контроля металлопродукции»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 11-97 от 25 апреля 1997 г.)

3 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 23 сентября 1997 г. № 332 межгосударственный стандарт ГОСТ 18895-97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г.

4 ВЗАМЕН ГОСТ 18895-81

1 Область применения

3 Отбор и подготовка проб

4 Аппаратура и материалы

5 Подготовка к анализу

6 Проведение анализа

7 Обработка результатов

Приложение А Условия проведения анализа на фотоэлектрических установках

ГОСТ 18895-97

Steel. Method of photoelectric spectral analysis

Дата введения 1998-01-01

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает фотоэлектрический спектральный метод определения в стали массовой доли элементов, %:

углерода

марганца

кобальта

алюминия

молибдена

вольфрама

циркония

Метод основан на возбуждении атомов элементов стали электрическим разрядом, разложении излучения в спектр, измерении аналитических сигналов, пропорциональных интенсивности или логарифму интенсивности спектральных линий, и последующем определении массовых долей эле­ментов с помощью градуировочных характеристик.

ГОСТ 8.315-97 ГСИ. Стандартные образцы состава и свойств веществ и материалов. Основ­ные положения

ГОСТ 859-78 Медь. Марки

ГОСТ 2424-83 Круги шлифовальные. Технические условия

ГОСТ 6456-82 Шкурка шлифовальная бумажная. Технические условия

ГОСТ 7565-81 (ИСО 377-2-89) Чугун, сталь и сплавы. Метод отбора проб для химического состава

ГОСТ 10157-79 Аргон газообразный и жидкий. Технические условия

ГОСТ 21963-82 Круги отрезные. Технические условия

JavaScript is currently disabled. Please enable it for a better experience of Jumi .

Полная версия документа доступна бесплатно авторизованным пользователям



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения