Подпишись и читай
самые интересные
статьи первым!

Телескоп определение. Что такое телескоп? Обзоры оптической техники и аксессуаров

Что такое телескоп, известно многим, но обычно довольно туманно. Видело его еще меньшее количество людей, а тех, кто имел возможность воспользоваться этим инструментом – еще меньше. Хотя сегодня, при желании, довольно неплохой телескоп можно приобрести в магазине. Но, прежде чем идти за покупкой, нужно хотя бы иметь представление, что это и зачем нужно, чтобы не пылилась коробка где-нибудь на балконе.

Итак, телескоп – это «это инструмент, который собирает электромагнитное излучение удаленного объекта и направляет его в фокус, где образуется увеличенное изображение объекта или формируется усиленный сигнал». Вот как завернули! Наиболее распространены и известны оптические телескопы – именно они увеличивают далекие объекты и позволяют рассмотреть или сфотографировать их мелкие детали, ведь видимый свет – это тоже один из видов электромагнитного излучения. Но есть телескопы, которые работают в других диапазонах, например, в рентгеновском и в радиодиапазоне, поэтому и понятие телескопа такое широкое.

Радиотелескопы похожи на огромные спутниковые «тарелки», да собственно и принцип их действия тот – же. Они собирают радиоизлучение, которое потом усиливается и изучается. Это «уши» астрономов, которыми они слушают небо. И слышат довольно много…

И все – таки понятие телескопа у нас ассоциируется с оптической системой – этакой подзорной трубой на подставке. Конечно, есть и такие, но это небольшая их доля от общего числа современных систем.

Первый телескоп, состоящий из пары линз, как считается, изобрел Галилео Галилей в 1609 году, но это не так. Годом раньше, в 1608 году, голландец Ганс Липпершлей попытался запатентовать устройство из трубки со вставленными линзами, которое он назвал подзорной трубой, но ему отказали по причине простоты конструкции. И даже раньше, в 1450 году Томас Диггес пытался смотреть на звезды с помощью линзы и вогнутого зеркала, но так и не довел идею до конца. Галилей оказался «в нужное время в нужном месте», и он первым навел простую подзорную трубу на небо, открыл горы на Луне и много других интересных вещей… Поэтому его можно назвать первым астрономом, применившим телескоп.

Телескоп Галилея дал начало эре телескопов – рефракторов. Так называют систему из линз, которая дает изображение за счет преломления света в линзах. Линза, в которую свет попадает, называется объективом. Чем она больше, тем больше света собирает и телескоп может показать более слабосветеящиеся объекты. Чем больше фокусное расстояние объектива, тем большее увеличение телескоп дает. Поэтому широко были распространены телескопы с огромными трубами – длиной в 3 метра и более. Та линза, в которую смотрит наблюдатель, называется окуляр. Он, наоборот, должен иметь маленькое фокусное расстояние. Кстати, увеличение телескопа можно получить, разделив фокусное расстояние объектива на фокусное расстояние окуляра.

Первые телескопы давали плохое изображение. Со временем систему усложнили – как объектив, так и окуляр состоит из нескольких линз из разных сортов стекла, которые компенсируют недостатки друг друга и современный телескоп-рефрактор – довольно хороший и мощный инструмент.

В 1720 году Исаак Ньютон создал первый зеркальный телескоп – рефлектор. Он имел металлическое вогнутое зеркало диаметром всего в 40 миллиметров, но давал отличную картинку. Отраженный свет не имеет таких недостатков и искажений, как преломленный, поэтому зеркальные телескопы системы Ньютона получили огромное распространение. Они имели довольно компактный размер по сравнению с линзовыми рефракторами при довольно мощном большом зеркале – объективе. И сейчас телескопы Ньютона – самый популярный инструмент астрономов – любителей. Многие делают их сами, а сейчас и в продаже есть много довольно сильных и недорогих моделей.

Из телескопов – рефракторов и рефлекторов со временем получилось очень много модификаций, которые имеют свои достоинства и недостатки. Рефракторы традиционно имеют большое увеличение и используются для изучения ярких, но далеких объектов – планет, Луны, Солнца, туманностей и звезд. Рефлекторы имеют большой объектив – зеркало собирает гораздо больше света благодаря большему диаметру, поэтому имеют большую светосилу. Они лучше подходят для наблюдения слабых объектов – туманностей, галактик, слабых звезд. Конечно, можно использовать любую модель для любой цели, но при выборе нужно учитывать будущие условия применения. Если хотите смотреть больше на планеты, Луну или кометы – можно купить как рефрактор, так и рефлектор, а если больше интересует наблюдение и фотографирование туманностей, переменных звезд или галактик – лучше выбрать зеркальный рефлектор.

Телескопы.

Телескоп - это прибор, с помощью которого наблюдают отдаленные объекты путём сбора электромагнитного излучения. Например, видимого света - оптические телескопы.

История телескопов.

Годом изобретения телескопа, а вернее зрительной трубы, принято считать 1608 год, когда голландец Иоанн Липперсгей продемонстрировал своё изобретение в Гааге. Тем не менее, в выдаче патента ему было отказано в силу того, что и другие мастера, Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара, уже имели свои подзорные трубы, а последний тоже вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент.

Позднейшие исследования показали, что, вероятно, подзорные трубы были известны и ранее.

Самые первые чертежи простейшего линзового телескопа (причем как однолинзового, так и двухлинзового) были обнаружены ещё в записях Леонардо да Винчи, датируемых 1509 годом. Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).

Сначала, это была всего лишь зрительная труба - комбинация очковых линз, сегодня бы ее назвали рефрактор.

Первым, кто направил зрительную трубу в небо, превратив её в телескоп, и получил новые научные данные, стал Галилео Галилей.

В 1609 году Галилео Галилей создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп с восьмикратным увеличением длиной около полуметра. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. Это был очень несовершенный инструмент, обладавший всеми возможными аберрациями.

Однако благодаря этому прибору, Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Название «телескоп» было предложено в 1611 году греческим математиком Иоаннисом Димисианосом для одного из инструментов Галилея. Сам Галилей использовал для своих телескопов термин «Perspicillum».

Телескопы Галилея. Флоренция. Музей Галилея.

Время и развитие науки предоставило исследователям возможности создавать более мощные телескопы, которые давали видеть много больше.

Астрономы начали использовать объективы с большим фокусным расстоянием. Телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы. Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров, так как долгое время не удавалось изготавливать линзы большого размера.

К 1656 году Христиан Гюйенс построил телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих.

К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Телескоп продолжал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон - уменьшение хроматической аберрации линзы происходит с увеличением ее фокусного расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой невероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину, и доставляли множество неудобств при работе с ними и их настройке. Недостатки телескопов-рефракторов заставили великие умы искать новые решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировка лучей стала производиться с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга в этом целиком и полностью принадлежит Исааку Ньютону, именно Ньютон сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм Ньютон изготовил из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким.

Телескоп Ньютона. Лондон. Астрономический музей.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для телескопов-рефлекторов.

Эволюционные прорывы в телескопостроении.

Годом рождения нового типа телескопа принято считать 1720 год, когда в Англии был построен первый функциональный телескоп-рефлектор диаметром в 15 сантиметров.

Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

Новая двухзеркальная система в телескопах была предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен сам не смог из-за отсутствия технической возможности изготовления нужных зеркал, но сегодня его чертежи реализованы во многих проектах.

Именно телескопы Ньютона и Кассегрена считаются первыми «современными» телескопами.

В космическом телескопе Хаббл были использованы принципы телескопа Кассегрена.

Фундаментальный принцип Ньютона с применением одного вогнутого зеркала был использован в СССР в 1974 году в Специальной астрофизической обсерватории.

Расцвет рефракторной астрономии произошел в 19 веке, тогда диаметр ахроматических объективов постепенно рос. Если в 1824 году диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году диаметр стал составлять 76 сантиметров (Пулковская обсерватория в России), в к 1897 году создан Йеркский телескоп-рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоростью одного сантиметра в год.

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд, который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзовые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей. Вильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равных в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего размера. Гершель собственноручно в мастерской выплавлял зеркала из меди и олова. Главный труд его жизни - большой телескоп с зеркалом диаметром 122 см. Это диаметр его самого большого телескопа. Открытия не заставили себя ждать, благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн.

Другой, ставший не менее известным, астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зеркалом с диаметром в 182 сантиметра. Благодаря своему телескопу, он открыл ряд неизвестных спиральных туманностей.

Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркало из посеребренного стекла. И опыт удался. Уже в 1890-х годах астроном-любитель из Англии построил рефлектор для фотографических наблюдений со стеклянным зеркалом в 152 сантиметра в диаметре. Это был очередной прорыв в телескопостроении.

Этот прорыв не обошелся без участия русских ученых. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство очень качественных линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна - хроматизма.

Лишь к концу 19 века был изобретен новый метод производства зеркальных линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра.

Эти принципиально новые зеркальные линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света.

Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал.

В конце 19 века астроном-любитель Кросслей обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп.

Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты.

С 1908 по 1935 год различные обсерватории мира создали более полутора десятков рефлекторов с объективом, превышающих йеркский. Самый большой телескоп был установлен в обсерватории Моунт-Вильсон, его диаметр 256 сантиметров. И даже этот предел совсем скоро был превзойден вдвое.

В 1976 году ученые СССР построили 6-метровый телескоп БТА - Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом. Создатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА был оттеснен во второй десяток крупных телескопов мира.

К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы - главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений - на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 метра.

Начиная, с 2002 года эти два телескопа, расположенные на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп.

Телескопы.

История телескопа прошла долгий путь - от зрительных труб итальянских мастеров оптиков-стекольщиков до современных гигантских телескопов-спутников.

Виды телескопов.

В наше время существуют телескопы для всех диапазонов электромагнитного спектра:

Оптические телескопы,

Радиотелескопы,

Рентгеновские телескопы,

Гамма-телескопы.

Кроме того, детекторы нейтрино часто называют нейтринными телескопами. Также, телескопами могут называть детекторы гравитационных волн.

Оптические телескопы.

Оптический визуальный телескоп имеет объектив и окуляр. Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения. В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом, а сам телескоп превращается в астрограф.

Оптический передвижной телескоп-астрограф.

По своей оптической схеме большинство оптических телескопов делятся на:

Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.

Зеркальные (рефлекторы или катаптрические) - в качестве объектива используется вогнутое зеркало.

Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется обычно сферическое главное зеркало, а для компенсации его аберраций служат линзы.

Стационарный оптический телескоп.

Кроме того, для наблюдений за Солнцем профессиональные астрономы используют специальные солнечные телескопы, отличающиеся конструктивно от традиционных звездных телескопов.

Радиотелескопы.

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы.

Комплекс радиотелескопов.

Основными элементами радиотелескопов являются принимающая антенна и радиометр - чувствительный радиоприемник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приемников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры. При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array). В таком режиме с 1997 по 2003 год работал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети.

Рентгеновские телескопы.

Рентгеновский телескоп - это телескоп, предназначенный для наблюдения удаленных объектов в рентгеновском спектре. Для работы таких телескопов обычно требуется поднять их над атмосферой Земли, непрозрачной для рентгеновских лучей. Поэтому рентгеновские телескопы размещают на космических ракетах и на искусственных спутниках Земли.

Космический рентгеновский телескоп.

Гамма-телескопы.

Гамма-телескоп - это телескоп, предназначенный для наблюдения удаленных объектов в спектре гамма-излучения. Гамма-телескопы используются для поиска и исследования дискретных источников гамма-излучения, измерения энергетических спектров галактического и внегалактического диффузного гамма-излучения, исследования гамма-всплесков и природы тёмной материи. Среди гамма-телескопов различают:

Космические гамма-телескопы, детектирующие гамма-кванты непосредственно в космосе.

Космический гамма-телескоп.

Наземные черенковские телескопы, устанавливающие параметры гамма-квантов (такие как энергия и направление прихода) путём наблюдения за возмущениями, которые вызывают гамма-кванты в атмосфере.

Наземный черенковский гамма-телескоп.

Космические телескопы.

Для чего телескопы отправляют в космос?

Земная атмосфера хорошо пропускает излучения в оптическом (0,3-0,6 мкм), ближнем инфракрасном (0,6-2 мкм) и радио (1 мм-30 м) диапазонах. Однако с уменьшением длины волны прозрачность атмосферы сильно снижается, вследствие чего наблюдения в ультрафиолетовом, рентгеновском и гамма диапазонах становятся возможными только из космоса.

В инфракрасном диапазоне также сильно поглощение в атмосфере, однако, в области 2-8 мкм имеется некоторое количество окон прозрачности (как и в миллиметровом диапазоне), в которых можно проводить наблюдения. Кроме того, поскольку большая часть линий поглощения в инфракрасном диапазоне принадлежит молекулам воды, инфракрасные наблюдения можно проводить в сухих районах Земли (разумеется, на тех длинах волн, где образуются окна прозрачности в связи с отсутствием воды). Примером такого размещения телескопа может считать Южнополярный телескоп (англ. South Pole Telescope), установленный на южном географическом полюсе, работающий в субмиллиметровом диапазоне.

В оптическом диапазоне атмосфера прозрачна, однако из-за Рэлеевского рассеяния она по-разному пропускает свет разной частоты, что приводит к искажению спектра светил (спектр сдвигается в сторону красного). Кроме того, атмосфера всегда неоднородна, в ней постоянно существуют течения (ветры), что приводит к искажению изображения. Поэтому разрешение земных телескопов ограничено значением приблизительно в 1 угловую секунду, независимо от апертуры телескопа. Эту проблему можно частично решить применением адаптивной оптики, позволяющей сильно снизить влияние атмосферы на качество изображения, и поднятием телескопа на большую высоту, где атмосфера более разреженная - в горы, или в воздух на самолетах или стратосферных шарах. Но наилучшие результаты достигаются при выносе телескопов в космос. Вне атмосферы искажения полностью отсутствуют, поэтому максимальное теоретическое разрешение телескопа определяется только дифракционным пределом: φ=λ/D (угловое разрешение в радианах равно отношению длины волны к диаметру апертуры). Например, теоретическая разрешающая способность космического телескопа с зеркалом диаметром 2.4 метра (как у телескопа Хаббл) на длине волны 555 нм составляет 0.05 угловой секунды (реальное разрешение Хаббла в два раза хуже - 0.1 секунды, но все равно на порядок выше, чем у земных телескопов).

Вынос в космос позволяет поднять разрешение и у радиотелескопов, но здесь более существенна другая причина. Каждый радиотелескоп сам по себе обладает очень маленьким разрешением. Это объясняется тем, что длина радиоволн на несколько порядков больше, чем у видимого света, поэтому дифракционный предел φ=λ/D намного больше, даже несмотря на то, что размер радиотелескопа тоже в десятки раз больше, чем у оптического. Например, при апертуре 100 метров (в мире существуют только два таких больших радиотелескопа) разрешающая способность на длине волны 21 см (линия нейтрального водорода) составляет всего 7 угловых минут, а на длине 3 см — 1 минута, что совершенно недостаточно для астрономических исследований (для сравнения, разрешающая способность невооруженного глаза 1 минута, видимый диаметр Луны - 30 минут).

Однако, объединив два радиотелескопа в радиоинтерферометр, можно существенно повысить разрешение - если расстояние между двумя радиотелескопами (так называемая база радиоинтерферометра) равна L, то угловое разрешение определяется уже не формулой φ=λ/D, а φ=λ/L. Например при L=4200 км и λ=21 см максимальное разрешение составит около одной сотой угловой секунды. Однако, для земных телескопов максимальная база не может, очевидно, превышать диаметр Земли. Запустив один из телескопов в дальний космос, можно значительно увеличить базу, а следовательно, и разрешение. Например, разрешение космического телескопа Радиоастрон при работе совместно с земным радиотелескопом в режиме радиоинтерферометра (база 390 тыс. км) составит от 8 до 500 микросекунд дуги в зависимости от длины волны (1,2-92 см). (для сравнения - под углом 8 мкс виден объект размером 3 м на расстоянии Юпитера, или объект размером с Землю на расстоянии Альфа Центавра).

Что такое телескоп

Инструмент, который собирает электромагнитное излучение удаленного объекта и направляет его в фокус, где образуется увеличенное изображение объекта или формируется усиленный сигнал.

По мере развития астрономической техники появилась возможность изучать объекты во всем электромагнитном спектре, для чего были разработаны специальные системы телескопов и дополнительных детекторов, позволяющие работать в различных диапазонах волн. Термин "телескоп", первоначально означавший оптический инструмент, получил более широкое значение. Однако в телескопах, работающих в видимом, радио- и рентгеновском диапазонах, используются системы и методы, сильно различающиеся между собой.

Оптические телескопы бывают двух основных типов (рефракторы и рефлекторы), отличающиеся выбором главного собирающего свет элемента (линза или зеркало соответственно). У телескопа-рефрактора на передней стороне трубы имеется объектив, а в задней части, где формируется изображение, - окуляр или фотографическое оборудование. В отражательном телескопе в качестве объектива использовано вогнутое зеркало, располагающееся в задней части трубы.

Объектив телескопа-рефрактора обычно представляет собой составную линзу из двух или нескольких элементов с относительно большим фокусным расстоянием. Использование составных линз уменьшает хроматическую аберрацию (такие линзы называют ахроматическими дублетами и триплетами). Минимизировать как хроматическую, так и сферическую аберрацию можно, если использовать большое фокусное расстояние, но это приводит к тому, что рефракторы получаются длинными и громоздкими. В прошлом для уменьшения погрешностей строились только рефракторы больших размеров. Если надо подчеркнуть, что наблюдения проводились с помощью рефракторного телескопа, то используют сокращение обозначение OG (object glass, т.е. объектное стекло).

При создании и установке больших стеклянных линз возникает ряд трудностей; кроме того, толстые линзы поглощают слишком много света. Самый большой рефрактор в мире, имеющий объектив с линзой диаметром в 101 см, принадлежит Йеркской обсерватории.

Все большие астрономические телескопы представляют собой рефлекторы. Рефлекторные телескопы популярны и у любителей, поскольку они не так дороги, как рефракторы, и их легче изготовить самостоятельно. В рефлекторе свет собирается в точке перед первичным зеркалом, называемой первичным фокусом. Собранный пучок света обычно направляется (посредством вторичного зеркала) к более удобному для работы месту. С этой точки зрения различают несколько общепринятых систем, в том числе ньютоновский фокус, кассегреновский фокус, фокус куде и фокус Несмита. В очень больших телескопах наблюдатель имеет возможность работать непосредственно в первичном фокусе в специальной кабине, установленной в главной трубе. На практике как вторичное зеркало, так и кабина в первичном фокусе не оказывают существенного влияния на работу телескопа. Большие многоцелевые профессиональные телескопы обычно строят так, что наблюдатель получает возможность выбора фокуса. Ньютоновский фокус используется только в любительских оптических телескопах.

Первичные зеркала в отражательных телескопах обычно изготавливают из стекла или керамики, которая не расширяется (и не сжимается) при изменении температуры. Поверхность зеркала тщательно обрабатывается до получения требуемой формы, обычно сферической или параболической, с точностью до долей длины волны света. Для получения отражательных свойств на поверхность стекла наносится тонкий слой алюминия. В ранних отражательных телескопах, например, у Уильяма Гершеля (1738-1822), первичное зеркало было изготовлено из полированного металлического сплава (68% меди и 32% олова). По латыни термин "зеркальный" предается как "speculum"; по этой причине для обозначения отражательного телескопа до сих пор иногда используют сокращение "spec". Самые ранние стеклянные зеркала покрывали серебром, но это оказалось неудобным из-за того, что на воздухе серебро темнеет.

В наиболее современных больших телескопах применяются методы активной оптики, которые позволяют использовать более тонкие и легкие зеркала, необходимая форма которых сохраняется поддерживающей системой, управляемой компьютером. Это позволяет использовать как зеркала с очень большими диаметрами, так и зеркала, составленные из отдельных элементов.

Мощность получаемого светового сигнала и разрешающая способность телескопов зависят от размера объектива. Чтобы получить возможность наблюдения все более слабых объектов и достичь разрешения мелких деталей, в астрономии наблюдается тенденция к созданию инструментов все большего размера, хотя этих целей частично можно достичь и за счет создания более чувствительных детекторов и применения интерферометров.

Увеличение мощности само по себе не имеет большого значения, если не считать небольших любительских телескопов, предназначенных для визуальных наблюдений. Усиление при визуальном наблюдении легко можно изменять с помощью различных окуляров. Максимальная степень усиления обычно ограничена не техническими характеристиками телескопа, а условиями видимости.

Изображения, получаемые в астрономических телескопах, инвертированы. Так как введение дополнительной линзы, которая могла бы скорректировать изображение, поглотит часть светового потока, не принеся особой пользы, астрономы предпочитают работать непосредственно с инвертированными изображениями.

Монтировка астрономического телескопа - важная часть конструкции, так как наблюдатель должен иметь возможность легко направлять телескоп в заданную точку неба и поддерживать его ориентацию при вращении Земли, отслеживая видимое движение объекта по небу. Небольшие любительские телескопы и современные управляемые компьютером телескопы используют альтазимутальную монтировку. До появления компьютерного управления наиболее распространенной была экваториальная монтировка. Экваториальную установку имеют многие из работающих в настоящее время телескопов, причем эта система остается популярной и для любительских инструментов

Экваториальная монтировка

Способ установки телескопа, при котором инструмент может вращаться вокруг полярной оси, параллельной оси вращения Земли, и оси склонения, перпендикулярной полярной оси. Вращение вокруг этих двух осей обеспечивает независимое задание обеих экваториальных координат. Движение вокруг полярной оси изменяет прямое восхождение; движение вокруг другой оси - склонение.

Экваториальная монтировка имеет определенные преимущества: чтобы скомпенсировать видимое движение неба, вызываемое вращением Земли, достаточно поворачивать телескоп только вокруг одной из двух осей (полярной). Однажды наведенный на точку небесной сферы с нужным склонением, телескоп уже не требует дополнительной корректировки. Поэтому в течение многих лет все телескопы сколько-нибудь значительного размера проектировались исключительно с экваториальной монтировкой. Однако развитие компьютерного управления позволило осуществлять наведение и управление даже очень большими телескопами при более простой альтазимутальной монтировке. Тем не менее экваториальная монтировка остается популярной и до сих пор достаточно широко применяется на практике.

Чтобы обеспечить адекватную поддержку и свободу движения для телескопов различных размеров и типов, были разработаны различные виды экваториальной монтировки. К основным вариантам установки относятся немецкая, английская, рамочная, подковообразная и вилочная. Поскольку полярная ось должна быть параллельна земной оси (т.е. направлена в точку северного полюса мира), каждая конструкция экваториальной монтировки подходит только для той широты, для которой она была разработана

Слово «телескоп» является производным от двух греческих слов, в переводе на русский язык означающих «далекий» и «наблюдать» .


Телескопом называют специальный оптический прибор, позволяющий приближать очень удаленные предметы, делать их отчетливо видимыми человеческому глазу. Для того чтобы такое увеличение было возможно, используют мощные линзы.

Кто придумал телескоп?

Считается, что первым использовать линзы для приближения удаленных предметов догадался ученый Галилео Галилей. В 1610-м году он сконструировал телескоп, через который разглядел кратеры на Луне, спутники Юпитера и прочие интересные детали, расположенные на космическом расстоянии. Но вместе с тем, при раскопках Трои археологи нашли хрустальные линзы, и это значит – не исключено, что умением приближать предметы люди обладали и раньше.

Обычно телескопы устанавливают – специальных сооружениях, предназначенных для наблюдений за различными явлениями природы. Обсерватории, имеющие вращающийся купол и расположенные в основном на возвышенностях, оснащают целыми комплексами телескопов.

Телескопы и инновации

Чем дальше шло развитие астрономии и прочих наук, тем совершеннее становились телескопы. Объекты стало возможно изучать в электромагнитном спектре, при помощи сложных систем детекторов и датчиков. Такое оборудование работает в различных диапазонах волн.


Сегодня есть телескопы, работающие в рентген-диапазоне и радио-диапазоне. Все эти телескопы кардинально отличаются друг от друга, но при этом имеют одну общую функцию: они дают человеку возможность детально изучать объекты, расположенные на очень далеком расстоянии.

Современные телескопы (точнее, радиотелескопы) – это мощное оборудование, которое анализирует и накапливает электромагнитное излучение удаленного объекта и направляет его в фокус. А уже там образуется увеличенное изображение объекта или формируется усиленный сигнал, позволяющий детально рассмотреть изучаемый объект. Космос также можно исследовать при помощи космических тепловизоров, которые передают изображение поверхностей удаленных объектов в инфракрасном диапазоне.

Наверное, самый знаменитый телескоп на планете – космический телескоп «Хаббл». Это инновационное оборудование расположено на орбите Земли и представляет собой скорее космическую обсерваторию. Телескоп был назван в честь астронома из США Эдвина Хаббла. Запустили «Хаббл» на орбиту в 1990-м году.

В течение последующих пятнадцати лет орбитальный телескоп получил более миллиона изображений двадцати двух тысяч космических тел, в том числе галактик, планет, звезд и туманностей. Уникальный телескоп делал снимки и передавал их на Землю.

Типы телескопов

Оптические телескопы могут работать с разными типами фокусирующего элемента. Соответственно, их делят на рефракторы (линза) и рефлекторы (зеркало).


Телескоп-рефрактор имеет объектив на передней стороне трубы, в задней части – окуляр. Объектив такого телескопа – это обычно составная линза из нескольких элементов с большим фокусным расстоянием. Самый большой в мире рефрактор имеет линзу диаметром 101 см.

В рефлекторе вместо объектива предусмотрено вогнутое зеркало, которое расположено в задней части трубы. Рефлекторными являются все большие астрономические телескопы. Рефлекторами пользуются и любители – это оборудование обходится не так дорого, как рефрактор, и собрать его можно своими силами.

В таком телескопе свет собирается в точке перед первичным зеркалом (первичным фокусом), а затем посредством вторичного зеркала направляется к более удобному для работы месту. Различают несколько общепринятых систем фокусировки: ньютоновский фокус, кассегреновский фокус, фокус Куде, фокус Несмита.

В больших телескопах наблюдатель может работать в первичном фокусе в специальной кабине, установленной в главной трубе. Многоцелевые профессиональные телескопы конструируют таким образом, чтобы наблюдатель мог выбирать фокус. Ньютоновский фокус используется только в любительских оптических телескопах.

Первичные зеркала в рефлекторах обычно изготавливают из стекла или керамики, которая не реагирует на перепады температуры. Поверхность зеркала обрабатывают до получения сферической или параболической формы.


Для получения отражательных свойств на поверхность наносится тонкий слой алюминия. По-латыни «зеркальный» звучит как «speculum», поэтому для обозначения отражательного телескопа до сих пор иногда используют сокращение «spec».

Современные телескопы мало похожи на первый телескоп Галилея и представляют собой сложнейшие технические кон-струкции. Но принцип их устройства остаётся прежним. С по-мощью линзы или параболического зеркала собирается свет от небесного объекта и строится изо-бражение в фокусе линзы или зеркала. Здесь помещается при-ёмник излучения, который фиксирует изображение для даль-нейшего изучения.

Небесные светила изучают, собирая, принимая, реги-стрируя и исследуя приходящее от звёзд излучение. Глаз то-же является прибором, собирающим и регистрирующим пада-ющий на него свет. Свет от звезды, проходящий через зрачок глаза, собирается хрусталиком на сетчатке. Энергия падающе-го света вызывает отклик нервных окончаний. В мозг посту-пает сигнал, и мы видим звезду. Но энергии, приходящей от звезды, может быть слишком мало (звезда слабая). Тогда сет-чатка не прореагирует, и мы звезды не увидим.

Принципиально телескоп от глаза отличается только раз-мерами, способом концентрации света и природой регистрато-ра света.

Важнейшими характеристиками телескопа являют-ся его разрешающая и проницающая способности .

Разрешающая способность

Разрешающая способность телескопа определяется наи-меньшим угловым расстоянием между светящимися точка-ми, которые могут быть видны (разрешены) как отдельные объекты.

Разрешающая способность телескопа определяется его размерами. Дифракция световых лучей на краю отверстия приводит к тому, что невозможно в телескопе различить две светящиеся точки, если направления на них образуют угол меньше предельного.

Предельный угол

Предельный угол для идеального объектива и видимого света определяется по формуле

где α — предельный угол, выраженный в угловых секундах; D — диаметр телескопа (в см). Для человеческого глаза пре-дельный угол равен 28” (фактически 1—1,5’), для крупнейше-го в мире телескопа диаметром 10 м предельный угол равен 0,015". Реально предельный угол в несколько раз больше из-за влияния атмосферы.

Проницающая способность

Проницающая способность телескопа определяется наи-меньшей регистрируемой освещённостью, создаваемой светя-щимся объектом.

Проницающая способность телескопа определяется прежде всего его диаметром: чем больше диаметр, тем больше света он собирает. Важную роль играют и приёмники излучения. Если 200 лет назад в телескоп просто смотрели и пытались зарисовать то, что видят, а 40 лет назад в основном фотогра-фировали созданное телескопом изображение, то теперь поль-зуются электронными приёмниками изображения, которые мо-гут регистрировать примерно 60% падающих на него фотонов (фотопластинка регистрирует примерно в 10—100 раз мень-шую долю).

Сейчас наступает новый этап в создании наземных телескопов, которые можно с полным основанием назвать при-борами XXI в. Во-первых, они очень большие — диаметр их главного зеркала 8—10 м. Во-вторых, они построены с использованием новых принципов. Их зер-кала подстраиваются под изменения, происходящие в атмос-фере, так что расфокусировка изображения, вызванная пе-репадами плотности воздуха и его потоками, сводится к минимуму. Такая оптика, «умеющая» приспосабливаться к быстроменяющимся условиям, называется адаптивной . Для по-вышения разрешающей способности телескопов применяются также методы оптической интерферометрии с большой базой.

К новому поколению телескопов относятся 10-метровые телескопы Кека (США), 10-метровый телескоп Хобби-Эберли и 8-метровые телескопы Джемини, Субару, телескоп VLT (Very Large Telescope — Очень Большой Телескоп) Европейской юж-ной обсерватории, а также находящийся в стадии постройки Большой Бинокулярный Телескоп (Large Binocular Telescope) в Аризоне (США).

Очень важно то обстоятельство, что во всех этих телеско-пах главное зеркало образовано отдельными зеркалами, чис-ло которых различно в разных телескопах. Так, в телескопе Субару смонтировано 261 зеркало, в VLT — 150 осевых и 64 боковых зеркала, в телескопе Джемини — 128 зеркал. В Большом Бинокулярном Телескопе (LBT) имеется два главных зеркала, состоящие также из многих элементов. Диаметр глав-ных зеркал всех этих телескопов лежит в диапазоне от 8,1 до 8,4 м.

Зеркала в современных телескопах управляемы. У каждого имеется система при-способлений, которые могут, давя на зеркало, нужным обра-зом изменять его форму, что стало возможным, когда начали изготовлять очень тонкие и лёгкие зеркала. Материал с сайта

С помощью телескопа необходимо получать как можно более ясное изображение удалённой звез-ды, которое должно выглядеть одной точкой. Большие объек-ты, вроде галактик , могут рассматриваться как множество то-чек. Свет от далёкой звезды распространяется в виде сфери-ческой волны, проходящей огромное расстояние в космичес-ком пространстве. Фронт волны, достигшей Земли, можно счи-тать плоским из-за гигантского радиуса сферы — расстояния до звезды.

Если на телескоп падает плоская волна, то в фокальной плоскости появляется точка, размер которой определяется толь-ко дифракцией света, т. е. выполняется условие предельного угла. Именно это имеет место в космическом телескопе Хаб-бла, который, несмотря на то, что его диаметр всего 2.4 м, по-лучает изображение лучше, чем 4—6-метровые телескопы ста-рой конструкции.

Прежде чем попасть в телескоп, волна проходит через зем-ную атмосферу и турбулентность воздуха, что нарушает пло-скую форму фронта. Изображение искажается. Адаптивная оп-тика призвана скомпенсировать отклонения и восстановить из-начальную (плоскую) форму волнового фронта.



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения