Подпишись и читай
самые интересные
статьи первым!

При половом размножении растений у потомства. Как размножаются растения

1) Деление одноклеточных (амеба). При шизогонии (малярийный плазмодий) получается не две, а много клеток.


2) Спорообразование

  • Споры грибов и растений служат для размножения.
  • Споры бактерий не служат для размножения, т.к. из одной бактерии образуется одна спора. Они служат для переживания неблагоприятных условий и расселения (ветром).

3) Почкование: дочерние особи формируются из выростов тела материнского организма (почек) - у кишечнополостных (гидра), дрожжей.


4) Фрагментация: материнский организм делится на части, каждая часть превращается в дочерний организм. (Спирогира, кишечнополостные, морские звезды.)


5) Вегетативное размножение растений: размножение с помощью вегетативных органов:

  • корнями - малина
  • листьями - фиалка
  • специализированными видоизмененными побегами:
    • луковицами (лук)
    • корневищем (пырей)
    • клубнем (картофель)
    • усами (земляника)

Способы полового размножения

1) С помощью гамет , сперматозоидов и яйцеклеток. Гермафродит - это организм, который образует и женские, и мужские гаметы (большинство высших растений, кишечнополостные, плоские и некоторые кольчатые черви, моллюски).


2) Конъюгация у зеленой водоросли спирогиры: две нити спирогиры сближаются, образуются копуляционные мостики, содержимое одной нити перетекает в другую, получается одна нить из зигот, вторая - из пустых оболочек.


3) Конъюгация у инфузорий: две инфузории сближаются, обмениваются половыми ядрами, потом расходятся. Количество инфузорий остается тем же, но происходит рекомбинация.


4) Партеногенез: ребенок развивается из неоплодотворенной яйцеклетки (у тлей, дафний, пчелиных трутней).

1. Установите соответствие между особенностью полового и вегетативного размножения и способом размножения: 1) бесполое, 2) половое. Запишите цифры 1 и 2 в правильном порядке.
А) формирует новые сочетания генов
Б) формирует комбинативную изменчивость
В) образует потомство, идентичное материнскому
Г) происходит без гаметогенеза
Д) обусловлено митозом

Ответ


2. Установите соответствие между характеристиками и способами размножения: 1) бесполое, 2) половое. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) Сливаются гаплоидные ядра.
Б) Образуется зигота.
В) Происходит с помощью спор или зооспор.
Г) Проявляется комбинативная изменчивость.
Д) Образуется потомство, идентичное исходной особи.
Е) Генотип родительской особи сохраняется в ряду поколений.

Ответ


3. Установите соответствие между этапами жизненного цикла растений и способами размножения: 1) бесполое, 2) половое. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) образуются споры
Б) сопровождается слиянием гамет
В) размножается спорофит
Г) размножается гаметофит
Д) образуется зигота
Е) происходит мейоз

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Споры бактерий, в отличие от спор грибов,
1) служат приспособлением к перенесению неблагоприятных условий
2) выполняют функцию питания и дыхания
3) НЕ служат для размножения
4) обеспечивают распространение (расселение)
5) образуются путем мейоза
6) образуются из материнской клетки путем потери воды

Ответ


Выберите три варианта. Бесполое размножение характеризуется тем, что
1) потомство имеет гены только материнского организма
2) потомство генетически отличается от материнского организма
3) в образовании потомства участвует одна особь
4) в потомстве происходит расщепление признаков
5) потомство развивается из неоплодотворенной яйцеклетки
6) новая особь развивается из соматических клеток

Ответ


Установите соответствие между характеристикой и способом размножения растения: 1) вегетативное, 2) половое
А) осуществляется видоизмененными побегами
Б) осуществляется с участием гамет
В) дочерние растения сохраняют большое сходство с материнскими
Г) используется человеком для сохранения у потомства ценных признаков материнских растений
Д) новый организм развивается из зиготы
Е) потомство сочетает в себе признаки материнского и отцовского организмов

Ответ


Установите соответствие между особенностью размножения и его видом: 1) вегетативное, 2) половое. Запишите цифры 1 и 2 в правильном порядке.
А) обусловлено сочетанием гамет
Б) особи образуются путем почкования
В) обеспечивает генетическое сходство особей
Г) происходит без мейоза и кроссинговера
Д) обусловлено митозом

Ответ


1. Установите соответствие между примером размножения и его способом: 1) половое, 2) бесполое. Запишите цифры 1 и 2 в правильном порядке.
А) спорообразование у сфагнума
Б) семенное размножение ели
В) партеногенез у пчел
Г) размножение луковицами у тюльпанов
Д) откладывание яиц птицами
Е) выметывание икры у рыб

Ответ


2. Установите соответствие между конкретным примером и способом размножения: 1) бесполое, 2) половое. Запишите цифры 1 и 2 в правильной последовательности.
А) спорообразование папоротника
Б) образование гамет хламидомонады
В) образование спор у сфагнума
Г) почкование дрожжей
Д) нерест рыб

Ответ


3. Установите соответствие между конкретным примером и способом размножения: 1) бесполое, 2) половое. Запишите цифры 1 и 2 в правильном порядке.
А) почкование гидры
Б) деление клетки бактерии на двое
В) образование спор у грибов
Г) партеногенез пчел
Д) образование усов земляники

Ответ


4. Установите соответствие между примерами и способами размножения: 1) бесполое, 2) половое. Запишите цифры 1 и 2 в правильном порядке.
А) живорождение у акулы
Б) деление надвое инфузории-туфельки
В) партеногенез пчел
Г) размножение фиалки листьями
Д) выметывание рыбами икры
Е) почкование гидры

Ответ


5. Установите соответствие между процессами и способами размножения организмов: 1) половое, 2) бесполое. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) откладывание яиц ящерицами
Б) спорообразование пеницилла
В) размножение пырея корневищами
Г) партеногенез дафний
Д) деление эвглены
Е) размножение вишни семенами

Ответ


6. Установите соответствие между примерами и способами размножения: 1) бесполое, 2) половое. Запишите цифры 1 и 2 в правильном порядке.
А) черенкование малины
Б) образование спор у хвоща
В) спорообразование у кукушкина льна
Г) фрагментация лишайника
Д) партеногенез тлей
Е) почкование у кораллового полипа

ФОРМИРУЕТСЯ 7. Установите соответствие между примерами и способами размножения: 1) бесполое, 2) половое. Запишите цифры 1 и 2 в правильном порядке.
А) образование гамет у хлореллы
Б) нерест осетровых
В) спорообразование у мхов

Г) деление амебы обыкновенной

Выберите один, наиболее правильный вариант. Размножение, при котором дочерний организм появляется без оплодотворения из клеток тела материнского организма, называют
1) партеногенезом
2) половым
3) бесполым
4) семенным

Ответ


Все приведённые ниже термины, кроме двух, используются для описания полового размножения организмов. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) гонада
2) спора
3) оплодотворение
4) овогенез
5) почкование

Ответ


Запишите цифры, под которыми указано что происходит при половом размножении животных.
1) участвуют, как правило, две особи
2) половые клетки образуются путем митоза
3) исходными являются соматические клетки
4) гаметы имеют гаплоидный набор хромосом
5) генотип потомков является копией генотипа одного из родителей
6) генотип потомков объединяет генетическую информацию обоих родителей

Ответ


Выберите три признака, характерных для полового размножения семенных растений, и запишите цифры, под которыми они указаны.
1) В размножении участвуют спермии и яйцеклетки
2) В результате оплодотворения образуется зигота
3) В процессе размножения происходит деление клетки пополам
4) Потомство сохраняет все наследственные признаки родителя
5) В результате размножения у потомства появляются новые признаки
6) В размножении участвуют вегетативные части растения

Ответ


Выберите два отличия полового размножения от бесполого.
1) половое размножение энергетически выгоднее бесполого
2) в половом размножении участвует два организма, в бесполом один
3) при половом размножении потомки точные копии родителей
4) в бесполом размножении участвуют соматические клетки
5) половое размножение возможно только в воде

Ответ


1. Все перечисленные ниже термины, кроме двух, используются при описании бесполого размножения. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) шизогония
2) партеногенез
3) фрагментация
4) почкование
5) копуляция

Ответ


2. Все приведенные ниже термины, кроме двух, используются для описания бесполого способа размножения живых организмов. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) фрагментация
2) семенное размножение
3) спорообразование
4) партеногенез
5) почкование

Ответ


3. Все приведенные ниже термины, кроме двух, используют для описания форм бесполого размножения. Определите два термина, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) партеногенез
2) почкование
3) фрагментация
4) бинарное деление
5) овогенез

Ответ


Установите соответствие между характеристикой и способом размножения растений: 1) половое, 2) вегетативное. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) осуществляется с участием гамет
Б) новый организм развивается из зиготы
В) осуществляется видоизмененными побегами
Г) потомство имеет признаки отцовского и материнского организмов
Д) потомство имеет признаки материнского организма
Е) используется человеком для сохранения у потомства ценных признаков материнского растения

Ответ


Все приведенные ниже примеры, кроме двух, относятся к бесполому размножению организмов. Определите два примера, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) размножение спорами папоротников
2) размножение дождевых червей фрагментацией
3) конъюгация инфузории-туфельки
4) почкование пресноводной гидры
5) партеногенез пчел

Ответ


Все приведённые ниже приёмы растениеводства, кроме двух, относят к вегетативному размножению. Определите два приёма, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) деление клубней
2) размножение корневищем
3) получение проростков из семян
4) искусственное оплодотворение
5) формирование отводка

Ответ


Все приведенные ниже организмы, кроме двух, размножаются спорами. Определите два организма, «выпадающих» из общего списка. Запишите цифры, под которыми они указаны.
1) гриб мукор
2) холерный вибрион
3) туберкулезная палочка
4) папоротник щитовник
5) кукушкин лен

Ответ

© Д.В.Поздняков, 2009-2019

Как и все живые организмы, растения размножаются. Существует три способа размножения растений - вегетативный, бесполый и половой. При вегетативном способе новая особь образуется из части вегетативных органов растений, т. е. листа, стебля или корня. Иногда новая особь возникает даже из отдельной клетки того или иного вегетативного органа растения. При бесполом размножении у растений образуются особые клетки (споры), из которых вырастают новые самостоятельно живущие особи, сходные с материнской. Этот способ размножения свойствен некоторым водорослям (рис. 1) и грибам (см. ст. «Грибы»). Половое размножение принципиально отличается от вегетативного и бесполого. Половой процесс в растительном мире крайне разнообразен и часто очень сложен, но по существу сводится к слиянию двух половых клеток - гамет, мужской и женской.

Рис. 1. Бесполое размножение хламидомонады: 1 - хламидомонада; 2-образование зооспор; 3 - выбегание зооспор.

Гаметы возникают в определенных клетках или органах растений. В некоторых случаях гаметы одинаковы по размерам и форме, обе имеют жгутики и потому подвижны. Это изогамия (рис. 3). Иногда они несколько отличаются друг от друга размерами. Это гетерогамия (рис. 2). Но чаще - при так называемой оогамии - размеры гамет резко различны: мужская гамета, называемая сперматозоидом, небольшая, подвижная, а женская - яйцеклетка - неподвижная и крупная (рис. 4). Процесс слияния гамет называется оплодотворением. Гаметы имеют в своем ядре по одному набору хромосом, а в образовавшейся после слияния гамет клетке, которая называется зиготой, число хромосом удваивается (см. ст. «Клетка»). Зигота прорастает и дает начало новой особи.

рис. 2. Гетерогамия у хламидомонады. Обе гаметы подвижны, но отличаются размерами.

Половой процесс осуществляется у растения в определенное время и на определенном этапе развития. На протяжении своего развития растение может размножаться также и бесполым путем (с образованием спор) и вегетативно.

Рис. 3. Изогамия у хламидомонады: 1 - образование гамет; 2 - гаметы; 3 - слияние гамет; 4 - зигота (видны жгутики); 5 - зигота со сброшенными жгутиками; 6,7,8 - прорастание зиготы и образование четырех новых особей хламидомонады.

Половое размножение возникло в растительном мире в процессе эволюции. У синезеленых водорослей его еще нет. Они размножаются только вегетативно, путем деления клетки на две. У большинства водорослей и грибов, а также у всех высших наземных растений половой процесс отчетливо выражен. Половое размножение очень важно для организма, так как благодаря слиянию отцовской и материнской клеток создается новый организм, который имеет большую изменчивость, лучше приспособлен к условиям окружающей среды.

Наиболее прост процесс полового размножения у одноклеточных водорослей, например у хламидомонад. Хламидомонада размножается как бесполым, так и половым путем. При бесполом размножении хламидомонада теряет жгутики и делится на 2, 4 (реже 8) клетки-споры. Каждая из них снабжена двумя жгутиками. Это зооспоры. После разрушения оболочки клетки, внутри которой они сформировались, зооспоры разбегаются и дорастают до размеров материнской клетки (рис. 1).

Рис. 4 Оогамия у хламидомонады: 1 - неподвижная яйцеклетка, а - сперматозоид; 2 - оплодотворение (слияние сперматозоида с яйцеклеткой); 3 - зигота, покрывшаяся толстой оболочкой.

При половом размножении (рис. 3) содержимое клетки хламидомонады делится и образуется большое число гамет (32 или даже 64). Потом оболочка материнской клетки прорывается, и гаметы, имеющие по два жгутика, выходят в воду, плавают, соединяются попарно своими носиками, где расположены жгутики, и, наконец, полностью сливаются друг с другом. У большинства хламидомонад трудно отличить, какие гаметы мужские, какие женские. Они одинаковы по форме и одинаково подвижны. Однако есть некоторые виды хламидомонад, которые образуют неподвижные крупные женские гаметы (яйцеклетки), а другие особи - мелкие подвижные мужские гаметы (сперматозоиды). После слияния гамет жгутики исчезают, образуется зигота, которая сразу же покрывается оболочкой (рис. 4).

Через некоторое время зигота прорастает. Первое деление ее ядра редукционное - особое деление ядра, при котором число хромосом в клетке уменьшается вдвое (см. ст. «Клетка»). В результате второго деления каждого из ядер образуются 4 клетки с одним набором хромосом в их ядрах. Оболочка зиготы лопается, и новые клетки выходят в воду, плавают при помощи двух жгутиков. Достигнув размеров материнской клетки, они могут снова размножаться бесполым и половым путем.

Период от появления гаметы и до образования новых гамет называют циклом развития растения. У некоторых многоклеточных водорослей обе половые клетки неподвижны. Так, у спирогиры при половом процессе содержимое одной клетки переливается в другую, где и происходит слияние их цитоплазмы, ядер и образуется зигота. У других многоклеточных водорослей процесс полового размножения более сложен.

Этот процесс очень разнообразен у наземных растений. У мхов, папоротников, голосеменных, например у хвойных, а также у цветковых растений он происходит по-разному. В связи с выходом из воды на сушу у мхов, папоротников, хвощей, плаунов и у семенных растений сильно усложнилось не только строение, но и процесс размножения. У них, как и у многих водорослей, наблюдается правильное чередование бесполого и полового поколений. Зигота прорастает без редукционного деления, и развивающаяся из нее особь имеет двойной набор хромосом.

Рис. 5. Развитие мхов: 1 - взрослое растение; 2 - прорастание споры (2 фазы); 3 - предросток с молодыми растениями мха; 4 - мужское растение с антеридиями; 5 - антеридий; 6 - сперматозоид; 7 - архегоний, готовый к оплодотворению; 8 - оплодотворенный архегоний; 9 - первые стадии развития спорогона; 10 - молодой спорогон внедрился ножкой в верхушку стебля; 11 - зрелая коробочка с клетками (а), из которых в дальнейшем образуются споры; 12 - подготовка клеток к редукционному делению; 13 - гаплоидные споры.

Это бесполое поколение, так как на таком растении образуются споры. При формировании их происходит редукционное деление, в результате которого спора получает один набор хромосом. Прорастающая спора дает начало половому поколению - организму, который образует половые клетки - гаметы. Все клетки этой особи несут один набор хромосом. Образующаяся в результате оплодотворения гамет зигота снова прорастает и дает бесполое поколение (с двойным набором хромосом). В цикле развития растения может преобладать половое (мхи) или бесполое (остальные высшие растения) поколение.

Рассмотрим цикл развития мха кукушкин лен (рис. 5). Стебли этого мха небольшие, крепкие, с многочисленными мелкими, узкими, жесткими листьями. На верхушке некоторых из этих стеблей развиваются коробочки, сидящие на удлиненной ножке и покрытые колпачком, как капюшоном (1). Коробочка на ножке называется спорогоном. В самой коробочке, покрытой крышечкой, образуется масса спор. Они мелкие, как пыль. При их образовании происходит редукционное деление, и споры

получают по одному набору хромосом (гаплоидные споры). После их созревания колпачок сбрасывается, крышечка коробочки отскакивает, и споры высыпаются наружу. Споры попадают на почву и при влажной погоде прорастают (2). Образуется зеленая ветвистая многоклеточная нить, стелющаяся по влажной поверхности почвы, а погруженные в почву бесцветные нити всасывают почвенные растворы. Зеленая нить называется предростком (3). На предростке образуются почки. Из почек развиваются новые стебли кукушкина льна.

На верхушках одних стеблей появляются многоклеточные небольшие кувшинообразные выросты, сидящие на небольшой ножке. Это женские половые органы, или архегоний. В их нижней расширенной части помещается одна неподвижная яйцеклетка. На верхушках других стеблей мха вырастают многоклеточные, но одностенные удлиненные мешочки - антеридии (4, 5). Внутри них образуются многочисленные мелкие мужские гаметы - сперматозоиды (6). Во время дождя или обильной росы мешочки лопаются вверху, и из них в слизистой массе выступает множество сперматозоидов, снабженных двумя жгутиками, с помощью которых они двигаются к верхушке тех стеблей кукушкина льна, где находятся архегоний. Проникнув через шейку архегония внутрь, сперматозоид сливается с яйцеклеткой (7, 8). В результате образуется зигота, которая прорастает без редукции хромосом здесь же, на верхушке стебля кукушкина льна, образуя бесполое поколение - спорогон, состоящий из коробочки и ножки. Ножка спорогона внедряется в ткани стебля и высасывает из него питательные вещества (9, 10), В коробочке спорогона образуются споры (11, 12, 13). Таков цикл развития мхов. У них преобладает половое поколение (само растение мха).

Рис. 7. Папоротник: 1 - внешний вид папоротника (бесполое поколение); 2 - долька листа с нижней стороны (видны сорусы, одетые покрывалом); 3 - разрез соруса, а - спорангии, б - покрывало; 4 - отдельный спорангий, из которого высыпаются споры.

Теперь рассмотрим цикл развития у папоротника щитовника, распространенного по тенистым местам в лиственных лесах (рис. 6, 7). Из верхушки его подземного корневища ежегодно вырастает пучок перистосложных листьев (1). На нижней поверхности листьев вдоль средней жилки легко заметить кучки спорангиев - так называемые сорусы, закрытые покрывалом, напоминающим в поперечном разрезе раскрытый зонтик (2, 3). Двояковыпуклый спорангий имеет вид чечевицы и расположен на ножке. Внутри спорангия масса мелких спор, возникших в результате редукционного деления.

Рис. 8. Половое размножение папоротника: 1 - заросток, а - архегонии, б - антеридии, в - ризоиды; 2 - из зрелого антеридия выходят сперматозоиды; 3 - архегонии, готовый к оплодотворению; 4 - заросток с молодым спороцоном, а - первый лист, б - корешок.

В сухую погоду, когда споры уже созрели, спорангий вскрывается (4). Высыпавшиеся от резкого толчка споры рассеиваются и попадают на поверхность почвы. Попав в благоприятные условия - тепло и влагу, спора прорастает и образует очень маленькую (2-5 мм в диаметре) тонкую зеленую пластинку сердцевидной формы - заросток (рис. 8). Своей нижней поверхностью заросток плотно прижимается к земле благодаря ризоидам, всасывающим из почвы растворы минеральных солей. Заросток папоротника обоеполый: на его нижней поверхности расположены женские (архегонии) и мужские (антеридии) половые органы. Заросток и представляет собой половое поколение папоротника. Во время дождя или обильной росы многожгутиковые сперматозоиды выходят из антеридия в воду и направляются к архегонию. Там происходит оплодотворение, после чего получается зигота - клетка с двойным набором хромосом. Она прорастает здесь же, на заростке, и образуется зародыш. Разрастаясь все больше и больше, он образует все части взрослого растения: стебель, лист, корни. Затем на нижней поверхности листа взрослого растения снова появляются сорусы со спорангиями.

Рис. 9. Мужские и женские шишки сосны: 1 - собрание мужских шишек; 2 - молодая женская шишка на верхушке побега; 3 - прошлогодняя женская шишка; 4 - чешуйки мужской шишки (вид сбоку и снизу); 5 - чешуйки женской шишки (вид с наружной и внутренней стороны); 6 - чешуйка зрелой женской шишки с двумя крылатыми семенами, отдельно изображены крылышко и семя; 7 - продольный разрез мужской шишки, на оси расположены чешуйки со спорангиями; 8 - отдельный спорангий со спорами (пылинками).

Таким образом, в цикле развития папоротника преобладает бесполое поколение, формирующее спорангии со спорами (сам папоротник). Половое поколение (заросток) имеет незначительные размеры и существует недолго. Оба поколения существуют раздельно, самостоятельно. Подобным же образом размножаются хвощи и плауны, которые вместе с папоротниками объединяют в класс папоротникообразных.

По-другому идет размножение у семенных растений. У них рассеиваются не споры, а семена. Однако и у этих растений тоже образуются споры, а также двоякого рода клетки полового размножения: мужские и женские.

У голосеменных, например у сосны, ели, образуются мужские и женские шишки (рис. 9). Мужские шишки собраны в тесные группы у основания побегов, развивающихся в этом году. Женские шишки сидят поодиночке сначала на верхушке побега, а затем вследствие роста побега оказываются у его основания. Мужская шишка состоит из чешуек, тесно сидящих на ее оси. На нижней поверхности чешуек расположены два спорангия. Внутри спорангия путем редукционного деления развивается огромное количество спор (пылинок). Содержимое каждой пылинки состоит из густой плазмы и ядра. Пылинка одета оболочкой, образующей два пузырчатых сетчатых воздушных мешка (рис. 10). Это приспособление способствует разносу ветром пылинок, высыпавшихся из лопнувшего пыльника. Пылинка прорастает в мужской заросток. При этом ядро ее делится, и образуются две быстро разрушающиеся клетки и две сохраняющиеся дольше клетки - более крупная вегетативная и более мелкая антеридиальная. В таком двуклеточном состоянии пылинка переносится ветром и попадает на поверхность женской шишки, где и происходит процесс оплодотворения.

Рис. 10. Пылинка (спора) и развитие мужского заростка сосны: 1 - зрелая спора, а - воздушные мешки; 2-5 - прорастание споры и образование мужского заростка, б, в - рано исчезающие клетки заростка, г - антеридиальная клетка, д - вегетативное ядро (ядро клетки пыльцевой трубки), е - сестринская клетка, ж - генеративная клетка (при дальнейшем ее делении образуются два спермин - мужские гаметы).

Женская шишка состоит из мелких кроющих чешуек, в пазухах которых развиваются крупные мясистые семенные чешуи. У основания последних на их внутренней (верхней) стороне расположены по две овальные семяпочки (рис. 11). В верху семяпочки имеется маленькое отверстие - пыльцевход. В семяпочке одна из клеток, выделяющаяся крупными размерами, делится редукционно, в результате образуются четыре споры. Три из них отмирают, а четвертая приступает к делению. В результате многократного деления образующихся при этом клеток формируется женский заросток, занимающий середину семяпочки. На заростке образуются два небольших архегония очень упрощенного строения с маленькими шейками, в каждом из которых находится по одной яйцеклетке.

Рис. 11. Семяпочка сосны: 1 - продольный разрез семяпочки, о - женский заросток, б - архегонии, в - нуцеллус, г - покров; 2 - верхняя часть семяпочки в продольном разрезе при большем увеличении, а - женский заросток, б - яйцеклетка архегония, в - нуцеллус, г - покров, д - пыльцевход, е - пыльцевая трубка, проросшая через нуцеллус и достигшая женского заростка. В пыльцевой трубке видны 4 ядра (2 спермин, вегетативное ядро и ядро сестринской клетки).

Если теперь разрезать семяпочку вдоль, то можно увидеть, что заросток окружен содержимым семяпочки (нуцеллусом), который, в свою очередь, одет покровом семяпочки. Наверху осталось всего лишь маленькое отверстие - пыльцевход. Через него и попадает перенесенная ветром на верхушку семяпочки пылинка. Она втягивается внутрь семяпочки, где и прорастает на следующее лето. Пылинка образует пыльцевую трубку, внедряющуюся в нуцеллус и растущую по направлению к шейке одного из архегониев. В это же время антеридиальная клетка делится на две. Одна из образовавшихся клеток в дальнейшем разрушается, а другая (генеративная клетка) увеличивается в размере, делится и образует две половые клетки - мужские гаметы, или спермин, не имеющие жгутиков.

Следует, однако, отметить, что у более древних голосеменных растений (гинкго и саговников) имеются подвижные сперматозоиды. Это свидетельствует об их происхождении от папоротникообразных растений.

Достигнув архегония, пыльцевая трубка лопается, и один из спермиев попадает в архегонии и сливается с яйцеклеткой. Происходит оплодотворение, и образуется зигота. Другой спермий вскоре отмирает. Из зиготы формируется зародыш нового растения, питающийся за счет запасных веществ клеток женского заростка (эндосперма). Семяпочка становится теперь семенем. Семя одето плотной кожурой, в которую превратился покров семяпочки.

Рис. 12. Строение и прорастание семени сосны: 1 - строение семени, а - кожура (покров) семени, б - остаток нуцеллуса, в - эндосперм, в середине которого находится зародыш, г - семядоли зародыша, д - подсемядольное колено (зачаточный стебель) е - корешок, ж - подвесок; 2 - прорастание семени сосны, а - кожура семени, б - семядоли, в - подсемядольное колено, г - корень, д - побег с первыми листьями.

Семена созревают к осени. Они сидят в основании чешуи шишки. К осени на второй год своего существования шишка разрастается. Из зеленой она становится бурой, чешуи подсыхают, расходятся, семена выпадают и рассеиваются. Попав в благоприятные условия, семена прорастают и развиваются в новые растения (рис. 12).

В цикле развития сосны, так же как и у папоротникообразных, преобладает бесполое поколение. Половое поколение здесь еще более просто устроено. При этом оно потеряло способность к самостоятельной жизни и развивается внутри тканей бесполого поколения (женский заросток - внутри семяпочки, а мужской заросток - внутри пылинки).

Особенность размножения покрытосеменных (или цветковых) растений - образование цветка как специализированного органа, приспособленного к половому размножению (рис. 13). Внешняя часть цветка состоит из околоцветника, обычно в виде лепестков и чашелистиков. Но главную часть цветка составляют находящиеся в его центре пестик (или пестики) и тычинки, расположенные вокруг пестика. Тычинки состоят из тычиночных нитей и пыльников, а пестик - из одного или нескольких сросшихся между собой завернутыми внутрь краями плодолистиков. В образующейся при этом срастании полости скрыты расположенные обычно по краям плодолистиков одна или несколько семяпочек.

Рис. 13. Размножение у покрытосеменных (цветковых) растений. Продольный разрез цветка (чашелистики и лепестки удалены): а - тычинка, на ее поперечном разрезе видны гнезда пыльника; б - пыльник в продольном разрезе, видна пыльца; в - нить тычинки; г - завязь; д - столбик; е - рыльце пестика; ж - прорастающая на рыльце пылинка; з - пыльцевая трубка, проросшая через ткани рыльца, столбика и достигшая зародышевого мешка семяпочки; и - зародышевый мешок.

В нижней части пестик расширен. Это завязь. Кверху пестик утончается и образует столбик, который заканчивается по-разному устроенным рыльцем, служащим для улавливания и восприятия пыльцы. Плодолистики затем изменяются и принимают большое участие в образовании плода.

Как и у голосеменных, здесь центральную часть семяпочки занимает однородная ткань из живых клеток - нуцеллус. С внешней стороны нуцеллус прикрыт двумя, реже одним покровом. Наверху покровы не смыкаются. Здесь имеется отверстие - пыльцевход. Вскоре после образования нуцеллуса одна из его верхних клеток путем редукционного деления образует четыре споры. Одна из них сильно разрастается и приступает к делению, в результате образуется женский заросток - зародышевый мешок. Остальные три споры отмирают.

Рис. 14. Пыльца покрытосеменного (цветкового) растения и ее прорастание: 1 - пылинка, внутри видны округлое вегетативное ядро - ядро клетки пыльцевой трубки (а) и изогнутая генеративная клетка (б); 2 - через пору в наружной оболочке пылинки вытягивается пыльцевая трубка; 3 - вегетативное ядро опустилось в пыльцевую трубку; 4, 5 - генеративная клетка поделилась, образовались два спермия (в); 6 - зрелые спермин (в).

Женский заросток у покрытосеменных еще более упрощен по сравнению с голосеменными и состоит всего из 8 клеток. Образуется он так. Ядро споры делится на два. Расходясь к полюсам зародышевого мешка, они снова двукратно делятся. Теперь на полюсах уже по четыре ядра. Вскоре от каждой из этих четверок по направлению к центру мешка отделяется по одному ядру. Это полярные ядра. Здесь они сближаются, затем, сливаясь, образуют вторичное (центральное) ядро зародышевого мешка.

Ядра, оставшиеся на полюсах, облекаются цитоплазмой. Образуется по три клетки на каждом из полюсов. Противоположные от семявхода клетки называются антиподами. Три клетки, расположенные близ верхнего конца зародышевого мешка, не одинаковы. Средняя из них представляет собой яйцеклетку, а расположенные по бокам возле нее две меньшие клетки называются вспомогательными. Середина зародышевого мешка заполнена цитоплазмой и вакуолями с вторичным ядром в центре.

Рис. 15. Зародышевый мешок (женский заросток) покрытосеменного (цветкового) растения и двойное оплодотворение: 1 - яйцеклетка; 2 - вспомогательные клетки; 3 - вскрывшаяся пыльцевая трубка. Один из спермиев (4а) сливается с яйцеклеткой; 5 - полярные ядра, сливающиеся со вторым спермием (4б); 6 - три клетки в нижней части зародышевого мешка (антиподы).

В пыльнике тычинки, в каждом из четырех его гнезд образуются споры (пылинки). Они происходят из особых материнских клеток пыльцы в результате редукционного деления их. Содержимое пылинки состоит из крупного ядра и цитоплазмы (рис. 14). Пылинка окружена двумя оболочками: внутренней и внешней. Во внешней оболочке имеются отверстия или утонченные места. Еще в гнезде пыльника в каждой пылинке начинается формирование мужского заростка. Он еще более упрощен в сравнении с голосеменными. Ядро пылинки делится, и образуются две клетки: более крупная - вегетативная и более мелкая - генеративная. После этого пыльник вскрывается, пыльца из него высыпается и с помощью ветра, насекомых или воды, а у некоторых тропических растений при помощи птиц попадает на рыльце пестика. Этот процесс называется опылением.

Около 10% цветковых растений опыляется ветром. Цветки ветроопыляемых растений невзрачны. Они имеют околоцветник в виде пленок, чешуек; нередко он совсем отсутствует, например у злаков, осок, дуба, березы, осины, ольхи. Пыльца этих растений очень мелкая, с гладкой наружной оболочкой. Пыльцы образуется очень много, ведь ветер - ненадежный опылитель. Лишь небольшая часть пылинок попадает на рыльце пестика.

Большинство цветковых растений опыляется насекомыми: пчелами, осами, шмелями, бабочками, мухами. Насекомые посещают цветки из-за сладкого сока (нектара), который выделяется особыми нектарными желёзками, расположенными на лепестках, тычинках или на цветоложе. Венчики цветков насекомоопыляемых растений ярко окрашены и хорошо заметны издали. Пыльца у них более крупная, наружная оболочка пылинок имеет выросты в виде шипов, бугорков, и потому пыльца легко задерживается на рыльце пестика.

Рис. 16. Строение и прорастание семени у клещевины: 1 - проросток (2 стадии развития), а - оболочка семени, б - эндосперм, в середине которого находится зародыш, в - семядоли, г - подсемядольное колено - зачаточный стебель, д - корень; 2 - разрез семени.

Очень важно, чтобы пыльца не попадала на рыльце того же цветка. В случае самоопыления, как заметил еще Ч. Дарвин, получается более слабое потомство. У растений имеются различные приспособления, обеспечивающие перекрестное опыление, при котором пыльца попадает на рыльце другого цветка. Так, у ветроопыляемых растений цветки большей частью раздельнополые: одни цветки содержат только тычинки (тычиночные цветки), другие - только пестики (пестичные цветки). У насекомоопыляемых растений цветки, как правило, обоеполые, имеющие тычинки и пестики. Очень часто тычинки созревают и начинают высыпать пыльцу значительно раньше, чем полностью сформируется пестик. У многих растений пестики созревают раньше тычинок. У некоторых растений, например у примулы, медуницы, незабудки, тычинки и пестики не одинаковы по длине. Наиболее здоровое и сильное потомство вырастает из семян, образовавшихся в результате перенесения пыльцы из цветков с длинными тычинками на рыльце пестиков с длинными столбиками.

Попавшая на рыльце пестика пыльца прорастает (рис. 14). Вегетативная клетка, находящаяся внутри пылинки, разрастается и вытягивается в пыльцевую трубку, которая выходит через отверстие во внешней оболочке пылинки и продвигается в виде тонкой нити сквозь рыхлую ткань рыльца и стенок пестика к семяпочке. Через пыльцевход она направляется к зародышевому мешку.

Во время роста пыльцевой трубки в нее проникает генеративная клетка. Здесь она делится и образует две мужские гаметы (спермин). Достигнув зародышевого мешка, пыльцевая трубка, в которой находятся вегетативное ядро и два спермин, лопается, и содержимое ее изливается в зародышевый мешок (рис. 15). Один из спермиев сливается с яйцеклеткой. Образуется зигота. Второй спермий направляется в середину зародышевого мешка и сливается там со вторичным ядром. Происходит так называемое двойное оплодотворение, составляющее особенность цветковых растений. Честь его открытия в конце XIX столетия принадлежит нашему русскому ученому С. Г. Навашину.

Оплодотворенное вторичное ядро начинает быстро делиться. В результате зародышевый мешок заполняется массой клеток, содержащих питательные вещества (крахмал, масло). Эту используемую для питания зародыша ткань называют эндоспермом. Оплодотворенная яйцеклетка - зигота начинает расти и делиться, в результате чего формируется зародыш, представляющий собой маленькое растение, состоящее из семядолей (двух или одной), подсемя-дольного колена и корня.

Семяпочка тем временем превращается в семя, ее покровы твердеют и образуют кожуру семени (рис. 16). Стенки завязи (плодолистики) разрастаются, становятся сочными или твердыми, кожистыми или деревянистыми. Теперь завязь превращается в плод, надежно защищающий семена. Плоды разносятся животными или ветром, и после разрушения стенок (околоплодника) семена освобождаются. Семя в благоприятных условиях прорастает и дает новое бесполое поколение цветкового растения. Таким образом, в цикле развития покрытосеменных растений также преобладает бесполое поколение.

Как мы уже говорили, низшим растениям, а также мхам и папоротникообразным для полового процесса необходима вода, в которой сперматозоиды активно движутся к яйцеклеткам. Эти растения произрастают или в воде (водоросли), или во влажных, тенистых местах (мхи, папоротники, хвощи, плауны). Половой процесс у семенных и особенно у цветковых растений не связан с водой, недостаток которой так остро ощущается при жизни на суше. Мужские гаметы (спермин) у них доставляются к яйцеклеткам при помощи пыльцевой трубки. Кроме того, семя надежно защищает зародыш. Благодаря этим особенностям семенные и особенно покрытосеменные растения смогли завоевать сушу. Они в настоящее время господствуют на Земле.

Размножение — свойство живых организмов воспроизводить себе подобных. Существуют два основных способа размножения — бесполое и половое.

Бесполое размножение осуществляется при участии лишь одной родительской особи и происходит без образования гамет. Дочернее поколение у одних видов возникает из одной или группы клеток материнского организма, у других видов — в специализированных органах. Различают следующие способы бесполого размножения : деление, почкование, фрагментация, полиэмбриония, споро-образование, вегетативное размножение.

Деление — способ бесполого размножения, характерный для одноклеточных организмов, при котором материнская особь делится на две или большее количество дочерних клеток. Можно выделить: а) простое бинарное деление (прокариоты), б) митотическое бинарное деление (простейшие, одноклеточные водоросли), в) множественное деление, или шизогонию (малярийный плазмодий, трипаносомы). Во время деления парамеции (1) микронуклеус делится митозом, макронуклеус — амитозом. Во время шизогонии (2) сперва многократно митозом делится ядро, затем каждое из дочерних ядер окружается цитоплазмой, и формируются несколько самостоятельных организмов.

Почкование — способ бесполого размножения, при котором новые особи образуются в виде выростов на теле родительской особи (3). Дочерние особи могут отделяться от материнской и переходить к самостоятельному образу жизни (гидра, дрожжи), могут остаться прикрепленными к ней, образуя в этом случае колонии (коралловые полипы).

Фрагментация (4) — способ бесполого размножения, при котором новые особи образуются из фрагментов (частей), на которые распадается материнская особь (кольчатые черви, морские звезды, спирогира, элодея). В основе фрагментации лежит способность организмов к регенерации.

Полиэмбриония — способ бесполого размножения, при котором новые особи образуются из фрагментов (частей), на которые распадается эмбрион (монозиготные близнецы).

Вегетативное размножение — способ бесполого размножения, при котором новые особи образуются или из частей вегетативного тела материнской особи, или из особых структур (корневище, клубень и др.), специально предназначенных для этой формы размножения. Вегетативное размножение характерно для многих групп растений, используется в садоводстве, огородничестве, селекции растений (искусственное вегетативное размножение).

Вегетативный орган Способ вегетативного размножения Примеры
Корень Корневые черенки Шиповник, малина, осина, ива, одуванчик
Корневые отпрыски Вишня, слива, осот, бодяк, сирень
Надземные части побегов Деление кустов Флокс, маргаритка, примула, ревень
Стеблевые черенки Виноград, смородина, крыжовник
Отводки Крыжовник, виноград, черемуха
Подземные части побегов Корневище Спаржа, бамбук, ирис, ландыш
Клубень Картофель, седмичник, топинамбур
Луковица Лук, чеснок, тюльпан, гиацинт
Клубнелуковица Гладиолус, крокус
Лист Листовые черенки Бегония, глоксиния, колеус

Спорообразование (6) — размножение посредством спор. Споры — специализированные клетки, у большинства видов образуются в особых органах — спорангиях. У высших растений образованию спор предшествует мейоз.

Клонирование — комплекс методов, используемых человеком для получения генетически идентичных копий клеток или особей. Клон — совокупность клеток или особей, произошедших от общего предка путем бесполого размножения. В основе получения клона лежит митоз (у бактерий — простое деление).

Половое размножение осуществляется при участии двух родительских особей (мужской и женской), у которых в особых органах образуются специализированные клетки — гаметы . Процесс формирования гамет называется гаметогенезом, основным этапом гаметогенеза является мейоз. Дочернее поколение развивается из зиготы — клетки, образовавшейся в результате слияния мужской и женской гамет. Процесс слияния мужской и женской гамет называется оплодотворением . Обязательным следствием полового размножения является перекомбинация генетического материала у дочернего поколения.

В зависимости от особенностей строения гамет, можно выделить следующие формы полового размножения : изогамию, гетерогамию и овогамию.

Изогамия (1) — форма полового размножения, при которой гаметы (условно женские и условно мужские) являются подвижными и имеют одинаковые морфологию и размеры.

Гетерогамия (2) — форма полового размножения, при которой женские и мужские гаметы являются подвижными, но женские — крупнее мужских и менее подвижны.

Овогамия (3) — форма полового размножения, при которой женские гаметы неподвижные и более крупные, чем мужские гаметы. В этом случае женские гаметы называются яйцеклетками , мужские гаметы, если имеют жгутики, — сперматозоидами , если не имеют, — спермиями .

Овогамия характерна для большинства видов животных и растений. Изогамия и гетерогамия встречаются у некоторых примитивных организмов (водоросли). Кроме вышеперечисленных, у некоторых водорослей и грибов имеются формы размножения, при которых половые клетки не образуются: хологамия и конъюгация. При хологамии происходит слияние друг с другом одноклеточных гаплоидных организмов, которые в данном случае выступают в роли гамет. Образовавшаяся диплоидная зигота затем делится мейозом с образованием четырех гаплоидных организмов. При конъюгации (4) происходит слияние содержимого отдельных гаплоидных клеток нитевидных талломов. По специально образующимся каналам содержимое одной клетки перетекает в другую, образуется диплоидная зигота, которая обычно после периода покоя также делится мейозом.

    Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз»

    Перейти к лекции №15 «Половое размножение у покрытосеменных растений»

1. Размножение растений.

2. Чередование фаз развития.

Размножение растений. Одно из обязательных свойств живых организмов - воспроизведение потомства (размножение). Размножение связано с последующим расселением растений. По словам В.И.Вернадского, размножение и расселение, т.е. растекание жизни - важнейший биологический фактор нашей планеты. При размножении увеличивается численность особей данного вида. Термин «воспроизведение» отражает качественную сторону. Численность особей в результате воспроизведения иногда может сокращаться (диатомовые водоросли).

Размножение как свойство живой материи, т.е. способность одной особи дать начало себе подобной, существовало и на ранних этапах ее развития. Эволюция жизни шла параллельно эволюции способов размножения.

Формы размножения растений можно разделить на два вида: бесполое и половое.

Собственно бесполое размножение осуществляется с помощью специализированных клеток - спор. Они образуются в органах бесполого размножения - спорангиях в результате митотического деления. Спора при своем прорастании воспроизводит новую особь, сходную с материнской, за исключением спор семенных растений, у которых спора утратила функцию размножения и расселения.

Бесполое размножение осуществляется без участия половых клеток, с помощью спор, которые формируются в специализированных органах - спорангиях или зооспорангиях. Внутри спорангия происходит редукционное деление и наружу высыпаются одноклеточные споры, или зооспоры (со жгутиками). Большинство низших растений размножается спорами (водоросли), из высших споровых - моховидные, плауновидные, хвощевидные, папоротниковидные.

Размножение растений с помощью вегетативных органов (частью побега, листом, корнем) или делением одноклеточных водорослей пополам и т.д. называется вегетативным. Оно широко используется в сельском хозяйстве, особенно при размножении сортового материала, где необходимо сохранить материнские признаки сорта. Так, многие культуры хорошо размножаются с помощью одревесневших и зеленых черенков (облепиха, лимонник, актинидия, черная смородина и др.), другие плодовые (яблоня, груша, черешня, абрикос и др.) - прививкой сортовых черенков в крону дикорастущих сеянцев. Луковичные растения размножают луковицами (тюльпаны, гиацинты, гладиолусы и др.); многие многолетние травянистые растения разводят корневищами (ландыш, купена, люпин многолетний, спаржа и др.), корнеклубнями (георгины, топинамбур и др.). Некоторые растения размножаются с помощью поросли (арония черноплодная, облепиха крушиновидная, малина обыкновенная и др.) или отводками (земляника садовая, крыжовник и др.).

Половое размножение осуществляется специальными половыми клетками - гаметами. Гаметы образуются в результате мейоза, они бывают мужские и женские. В результате их слияния появляется зигота, из которой в дальнейшем развивается новый организм. Растения различаются типами гамет. У некоторых одноклеточных организм в определенный период функционирует как гамета. Разнополые организмы (гаметы) сливаются. Такой половой процесс называется хологамией. Если мужские и женские гаметы морфологически сходны, подвижны, это изогаметы, а половой процесс называется изогамией. Если женская гамета несколько крупнее и менее подвижна, чем мужская, то это гетерогаметы, а половой процесс называется гетерогамией. Более совершенна в эволюционном плане оогамия, при которой женские гаметы довольно крупные и неподвижные, а мужские - мелкие и подвижные. Женская гамета называется яйцеклеткой, а гаметангий, в котором образуется яйцеклетка, у низших растений (водорослей) называется оогонием, а у высших - архегонием. Мужские гаметы - сперматозоиды - обладают жгутиками.

У большинства семенных растений мужские гаметы утратили жгутики и называются спермиями. Гаметангий, в которых образуются сперматозоиды, именуются антеридиями.

Большинство растений обладают всеми способами размножения, однако для многих водорослей, высших споровых и семенных растений характерно чередование бесполого и полового типа размножений. На бесполом поколении в спорофите, или диплобионте, в результате созревания спор, а затем редукционного деления образуются споры, а на половом поколении – гаметофите - женские и мужские гаметы, которые при слиянии образуют зиготу. Из нее опять вырастет спорофит, т.е. чередование поколений происходит со сменой ядерных фаз.

Чередование фаз развития. Установлено чередование фаз развития у разных систематических групп растений. Удалось выяснить общую закономерность: спорофит лучше развивается и становится самостоятельным; гаметофаза, наоборот, все более редуцируется и полностью теряет свою самостоятельность и зависит от спорофита (голосеменные и покрытосеменные растения). В эволюции полового размножения редукция гаметофита имела прогрессивное значение, что привело к образованию новых зачатков размножения и распространения - семян и плодов.

Наиболее примитивный цикл развития у мхов. Только у них среди высших растений можно видеть хорошо развитый самостоятельный гаметофит.

У плаунов, хвощей, папоротников по продолжительности жизни преобладает спорофит, а гаметофит представлен слоевищем (заростком).

У перечисленных растений половой процесс и гаметофаза служат для воспроизведения спорофазы, а спорофаза, хотя и недолго, но все же зависима от гаметофазы.

Большая приспособленность к условиям наземного существования связана с жизненным циклом голосеменных и покрытосеменных растений. Специфика жизненного цикла голосеменных растений выражена в строении семязачатка и превращении его в семя. Мегаспора этих растений полностью утратила функцию зачатка размножения и распространения. Мужской гаметофит (пыльца) в условиях отсутствия водной среды приобретает новое значение: с помощью пыльцевой трубки доставляет гаметы к яйцеклетке. Мужские гаметы - спермии - неподвижны. Таким образом, смена поколений спорофита и гаметофита у голосеменных растений существенно отличается от предыдущих групп растений, так как половое поколение - мужской гаметофит (пыльцевое зерно) и женский гаметофит (первичный эндосперм) - в значительно редуцированном состоянии заключено в тканях спорофита и полностью зависят от него.

Жизненный цикл у покрытосеменных растений существенно отличается от жизненного цикла предыдущих групп растений. Женский гаметофит покрытосеменных сильнее редуцирован, чем га-метофит голосеменных. Это зародышевый мешок. Архегонии отсутствуют. Оплодотворение двойное (один спермий оплодотворяет яйцеклетку, другой - вторичное ядро зародышевого мешка). Эндосперм триплоидный.

Таким образом, у покрытосеменных растений хотя и происходит смена поколений - спорофита и гаметофита, однако мужской и женский гаметофиты редуцированы еще больше - до нескольких клеток, находящихся в тканях цветка спорофита. Спорофит же - обычные, хорошо знакомые нам деревья, кустарники и травы.

Лекция № 7

Рост и развитие цветковых растений

1. Влияние факторов внешней среды на рост растений.

2. Стимуляторы роста.

3. Ростовые движения растений.

4. Периодичность роста.

5. Холодостойкость, зимостойкость и морозостойкость.

6. Индивидуальное развитие растений.

7. Жизненные формы растений.

Рост и развитие цветковых растений. Растения растут в течение всей жизни. Рост - это увеличение размеров растения, в основе которого лежит увеличение его массы: количество листьев, корней, побегов, объема и числа клеток, появление новых структурных элементов как в клетках, так и в самом организме.

Рост растения в целом и отдельных его органов идет за счет деления клеток образовательной ткани. В зависимости от расположения в органах растения образовательной ткани различают несколько видов деления. Апикальный рост - рост стеблей и корней своей верхушкой, где находится образовательная ткань. Интеркалярный рост (вставочный) рост стебля за счет вставочной меристемы в узлах. Для листьев характерен базальный рост этапы. Первая фаза – эмбриональная, при которой клетки непрерывно делятся в зонах роста стебля и корня. Вторая фаза-увеличение размеров клеток – растяжение. Третья фаза роста – дифференцировка клеток – их специализация в зависимости от вида тканей.

Скорость роста у растений неодинакова. Большинство растет со скоростью 0,005 мм в минуту, в сутки – 0,7 см. Стрелка цветка увеличивается на 3 см в сутки. Интенсивность роста связана с использованием в момент цветения накопленных в луковицах питательных веществ. Очень быстро растет бамбук: в минуту 1,6 мм, в час 3,6 см, в сутки 86,4 см. Причина значительной разницы роста у этих растений не в скорости деления клеток, в размерах зоны роста. У медленно растущих растений в росте участвует отрезок стебля длиной 0,6 см, а у бамбука зона роста (все узлы стебля вместе) до 60см.

Влияние факторов внешней среды на рост растений. Для роста растений необходимо комплекс благоприятных условий свет, тепло, влажность, характер почв, их влажность и температура. К настоящему времени накоплено большое количество сведений о влиянии различных факторов среды на рост растений. В природе наряду с растениями обычного размера встречаются карлики и великаны.

Каменистые сухие почвы не способствуют росту, здесь обитают низкорослые растения. Растения – карлики возникают в условиях очень интенсивного освещения. В природе карликовые растения в большом количестве встречаются в тундре, образуя низкорослые «леса» до полуметра высотой. Здесь наряду с другими факторами сказывается влияние длинного дня. Высоко в горах растения находятся в трудных условиях: низкие температуры, иссушения, сильное ультрафиолетовое излучение. Здесь деревья в возрасте несколько сотен лет достигают размеров сильно ветвистых кустарников.

В природе наблюдается и гигантизм растений, причем это явление характерно для определенных районов земного шара. Травянистые и древесные гиганты можно наблюдать на Дальнем Востоке. Например, высота дудника медвежьего – 3 - 4 м. На Сахалине и Курильских островах диаметр листьев белокопытника достигает 150см. На Камчатке также встречаются растения-гиганты – мятник, овсяница. Растения европейской части России, пересаженные на Дальний Восток, растут более интенсивно, чем у себя на родине, а растения Дальнего Востока, пересаженные в европейскую часть страны, свойство гигантизма теряют.

Растения – великаны встречаются и в других районах земного шара. В Восточной Африке на высоте 3600 - 4700 м обитают верески высотой до 20м. на Гавайских островах можно встретить герань, паслен, на Памире – кусты барбариса высотой до 4 м. Немного ниже этих высот растут те же виды, но обычных размеров. Анализируя особенности роста растений в разных районах земного шара, ученые пришли к выводу, что интенсивный рост связан с местами, где высокая вулканическая деятельность, идут интенсивность горообразовательные процессы, где происходит перемещение веществ из глубин Земли на поверхность. Гигантизм растений в таких районах обусловлен определенными микроэлементами. Так, осины с листьями диаметром 30 см встречаются в местах, где в почве есть торий.

Еще один стимулятор – талая вода. Она усиливает рост фитопланктона в океана и наземных высших растений. Такая вода интенсивнее поглощается растительными тканями, что связано с особенностями структуры талой воды. По некоторым данным, талая вода повышает урожайность сельскохозяйственных растений в 1,5 - 2 раза.

Исследования о влиянии факторов среды на рост растений расширили представления о многообразии этих факторов. Есть данные о влиянии электричества и магнитного поля на рост растений. Установлено, что фотосинтез и корнеобразование идут быстрее, а следовательно, растение лучше растет, если к нему подключен отрицательный электрод, так как само растение заряжено отрицательно. Подключение данного электрода увеличивает разность потенциалов между растением и атмосферой.

Влияние на рост растений магнитного поля связано с чувствительностью растений к силовым линиям магнитного поля Земли. Положительно на рост растений влияет и магниченная вода, которая приобретает свойство лучшего усвоения. Полив такой водой ускоряет рост, увеличивает урожай, повышает содержание витаминов, сахаров.

Небесные тела – Луна, Солнце – также воздействует на рост растений. Результаты опытов о влиянии фаз Луны на рост растений показали, что при полной Луне роста овощей увеличивается на 20% по сравнению с фазами, когда Луна рождается или «стареет». Вспышки на Солнце, появление пятен на его поверхности усиливают рост деревьев.

Не менее интересны факты о влиянии разного рода звуков на рост растений. Установлено, что звучание скрипки вызывает усиление роста растений, в основе которого лежит ускорение движения цитоплазмы, что приводит к повышению обмена веществ. Так, «прослушивание» стыдливой мимозой в течение 25 мин старинной индийской музыки усиливает ее рост в 1,5 раза.

Опыты американского ученого Д.Ретолак над проростками растений, подвергавшихся воздействию разного рода музыки, показали, то музыка Баха и индийская музыка стимулируют рост растений, стебли которых тянулись к источнику звука, а рок-музыка и звуки низкой частоты. Усиливая темп роста (рокот морских волн и грома, журчание воды, гудение шмеля). Так, бананы растут под музыку с преобладанием басовых нот. Бурным ростом реагировали на звуки проростки озимой пшеницы, салата. Сотрудники американского университета установили что шум реактивного двигателя ускоряет прорастание семян сахарной свеклы, а в Сибирском технологическом институте с помощью звуков обыкновенного автомобильного гудка добились стимуляции роста семян сосны кедровой.

Стимуляторы роста. На рост растений наряду с внешними факторами влияют внутренние факторы самого растения. В процессе жизнедеятельности в растении образуются физиологически активные вещества: ферменты, витамины, гормоны. Среди них особая роль в управлении процессами роста принадлежит фитогормонам. Одних из них - ауксины, цитокинины, гиббереллины – стимулируют рост, другие его ингибируют или тормозят – абсцизовая кислота, этилен. Ауксин образуется на неосвещенной стороне, в связи с чем растение изгибается к источнику света. Ауксин усиливает образование корней у черенков, предотвращает опадание завязей, разрастание завязей, формирование плодов без оплодотворения. Кинины – химические вещества, которые образуются в корнях и, поднимаясь вверх по растению, способствуют формированию и росту боковых и пазушных почек, делению клеток. В настоящее время кинины нашли применение при культивировании растительных тканей, при этом используются питательные различные среды. Хорошие результаты получены при употреблении кининов для продления сроков хранения овощей, фруктов и цветов. Применение кинина для продления жизни срезанных цветов предотвращало старение листьев, что способствовало длительному сохранению цветов. Гиббереллины влияют только на рост высших растений, усиливая прорастание семян, почек, луковиц, клубней. Кроме того, они способствуют удлинению стебля. Стимуляторы роста действуют в благоприятных условиях. В неблагоприятных условиях действуют другие гормоны – ингибиторы. Они накапливают в разных органах растения, в том числе в плодах и семенах, препятствуя их росту в неблагоприятных условиях. Среди ингибиторов роста выделяют абсцизовую кислоту. Она содержит в корнях растений и с восходящим током веществ поднимается к побегам и листьям. Замечено, что этот фитогормон образуется при недостатке воды, когда устьица закрываются. Уменьшая испарение.

К концу вегетационного периода абсцизовая кислота накапливается в почках, клубнях и других органах, которые вступают в период покоя. Но к концу периода покоя ее количество резко уменьшается. К естественным ингибиторам можно отнести этилен, самшитовую кислоту.

Ростовые движения растений. Все живые организмы обладают раздражимостью. Это ответная реакция на различные факторы внешней среды: свет, температуру, звук, силу тяжести, ветер и т.п. в основе этих ответных реакций лежит одно из свойств цитоплазмы клетки – ее раздражимость. Ответные реакции растений на различные раздражители заключаются в ростовых и сократительных движениях. Ростовые движения зависят от вида раздражителя. Механизм действия раздражителя на растения сложен. В основе его лежит появление электрического потенциала действия, который можно уловить с помощью особых приборов.

Ростовые движения могут возникать под влиянием раздражителя, действующего в одном направлении – это тропизмы.

Тропизмы различают в зависимости от вида раздражителя. Если растение под влиянием раздражителя изгибается к источнику раздражителя, то это положительный тропизм, а если оно изгибается в противоположную сторону от раздражителя, то это отрицательный тропизм.

Геотропизм. Положительный геотропизм – рост корня строго по направлению к центру земли, что связано не только с деятельностью гормонов, но и с особыми крахмальными зернами в корневом чехлике, выполняющими роль статолита. Отрицательный геотропизм характерен для стебля.

Фототропизм – изгиб растения к источнику света. Этот изгиб имеет химическую природу. Под влиянием фитогормона ауксина на теневой стороне деления и рост клеток интенсивнее по сравнению со световой стороной, где ауксина меньше и рост клеток замедлен. В связи с этим растение изгибается в сторону клеток медленно растущих, т.е. к свету.

Хемотропизм – движения растений под влиянием химических соединений.

Кроме того, у некоторых растений способны реагировать на изменение освещенности в течение дня. В связи с этим происходит открывание и закрывание лепестков цветка в определенное время. Это заметил еще К. Линней и создал «цветочные часы» цветочные часы показывали время от 3 - 5 ч утра до 9ч вечера. По этим часам от 3 до 5 открывал цветки козлобородник, в 5 – осот желтый, в 5-6 – одуванчик лекарственный, скерда кровельная, в 6- картофель, в 6 – картофель, лен, с 6 до 7 ч – ястребинка волосистая, осот полевой. С наступлением сумерек открывали цветки душистый табак, дрема. Закрывались цветки также в определенное время. Причина открывания цветков чаще всего связана с изменением освещенности, кроме того, - с погодой и географическим местом произрастания растения. Это явление связано с внутренним механизмом, в основе которого лежит неравномерный рост верхней и нижней сторон лепестка.

Кроме тропизмов, для растений характерен другой вид движения – настии. Различают термонастии – движение лепестков под влиянием рассеянного теплового источника. Так, внесение в тепловую комнату с улицы тюльпанов приводит к отгибанию лепестков цветка. Кроме термонастии наблюдается фотонастии и сократительные настии. Связаны с сотрясением растения сейсмонастии, например, опускание листьев у тропической стыдливой мимозы при опадании на них капель дождя или воздействие механическим раздражителем. На движения растений влияет изменение тургорного давления в различных органах. Так, у кислицы – растения термохвойных лесов после восхода солнца листочки опускаются и прижимаются к черешку. В основе этого явления лежит то, что в верхней половине листа в месте его сочленения тургор повышается. И изгиб происходит в сторону меньшего тургорного давления. То же наблюдается в холодные дни и во время дождя.

Периодичность роста. Для растений характерен рост в течение всей жизни. Но растут растения непрерывно, а периодически. Есть периоды интенсивного роста и периоды покоя. Смена периодов роста и покоя связана с факторами внешней среды (свет, температура, влажность) и внутренними физиологическими процессами, которые наследственно закреплены в процессе эволюции. На это указывает тот факт, что лиственные деревья средних широт, перемещенные в места, где температура и количество осадков существенно не изменяются, с наступлением зимы все равно сбрасывают листья. Сигналом к наступлению покоя может быть изменение светового режима суток. Например, летняя засуха у растений средних широт может вызвать длительный глубокий покой. Глубокий покой – необходимая фаза роста и развития растения, которая сменяет период вегетации. Период покоя у разных растений неодинаков. Так, у сирени, бузины, жимолости, крушины, черной смородины период глубокого покоя начинается уже в ноябре. Видимо, в прошлом они были вечнозелеными растениями. У березы бородавчатой, боярышника, тополя белого глубокий покой длится до января. Самый длительный покой у липы мелколистной, у клена татарского – почти полгода, у дуба и ясеня- до конца апреля.

К наступлению периода покоя в тканях растения уменьшается количество стимуляторов роста. Во время покоя многим растениям необходимо воздействие холода, иначе они не смогут после покоя возобновить рост. С окончанием периода покоя у разных растений в разное время появляются листья и наступает цветение. Это возможно, так как во время покоя проходит подготовка к весеннему росту растений, накапливается очень важная для жизни растения РНК, которая участвует в образовании белка. Период покоя характерен не только для всего растения, но и для семян в течение которого они сохраняют свою всхожесть. Так, у арбуза, дыни, огурца, кабачка, всхожесть сохраняется 6-8 лет, у бобов, гороха 5-6 лет, у капусты, редиса – 4-5 лет, у сельдерея, пастернака - только – 1-2 года.

Холодостойкость, зимостойкость и морозостойкость. От глубины периода покоя в зимнее время зависит зимостойкость и морозостойкость растений.

Устойчивость растений к низким температурам в основном обеспечивается благодаря изменениям внутри клетки ее химического состава. Роль антифризов - веществ, которые снижают температуру замерзания раствора в клетке, играют сахара. Они препятствуют и свертыванию белков при пониженных температурах. Чем больше накоплено в тканях сахаров, тем лучше растение противостоит низким температурам. При обильном плодоношении у плодовых деревьев все сахара идут на образование плодов и в запас их откладывается мало, поэтому такие растения могут вымерзать. Поздняя и обильная подкормка растений азотом приводит к осеннему росту растений, в результате все питательные вещества будут истрачены на рост растения.

Зимостойкость - это способность растений в зимнее время переносить колебания температуры от морозов к оттепели, а переход от оттепели к морозам переносят тем хуже, чем продолжительнее сильные морозы.

Морозостойкость. Связана со способностью растений переносить сильные и длительные морозы. У этих растений в клетках много сахара и цитоплазма теряет воду, что способствует сопротивляемости к низким температурам. Поэтому такие растения, как зеленчук, копытень, медуница, зимуют под снегом с листьями.

Южные растения, культивируемые в северных широтах (огурец, кабачки) и способные переносить низкие положительные температуры, называют холодостойкими. Так, огурец кратковременно выдерживает температуру до 3 °С, но при такой температуре через 3 - 4 дня погибает.

Закаливание семян путем воздействия разными температурами повышает их холодостойкость.

Индивидуальное развитие растений. Развитие - это качественные морфологические и физиологические изменения, которые осуществляются в течение жизни растения. Так, появление цветка свидетельствует о том, что в растении произошли глубокие биохимические и физиологические сдвиги. Каждое растение проходит определенный цикл развития - онтогенез, который длится от образования зиготы до смерти. Различают два периода индивидуального развития.

Эмбриональное развитие (эмбриогенез) - развитие от зиготы до формирования зародыша.

Постэмбриональное развитие - это время развития с момента прорастания семени.

Постэмбриональное развитие проходит в несколько этапов.

1. Латентный период - состояние покоящегося семени. Этот период может продолжаться от нескольких дней до нескольких лет, пока семя не попадет в благоприятные условия для прорастания.

2. Период всходов, или проростка, длится до появления первого листа, и до его появления зародыш питается запасными веществами семени.

3. Период молодого растения длится от первого листа до начала цветения. Растение полностью обеспечивает себя питательными веществами.

4. Период взрослого растения - время цветения и плодоношения.

5. Период старого растения - растение перестает цвести и плодоносить.

6. Период старости - последний период в жизни растения, когда оно перестает цвести и плодоносить, чахнет и умирает.

Переход от одного этапа развития к другому сопровождается различными изменениями, которые приводят к образованию разнообразных органов. Этот процесс называется органогенезом и продолжается в течение всей жизни растения.

Развитие растения начинается с прорастания семени.

Условия прорастания семян и формирование проростка. Для прорастания семян необходимы определенные условия увлажнения, температуры. Диапазон температур, благоприятных для прорастания, зависит от географического происхождения растений. У северных растений он ниже, чем у южных: семена пшеницы могут прорастать при температуре 0 – 10 С, а семена кукурузы - не ниже 120 С. Для семян тропических пальм необходима температура 20 - 25° С. Температуру окружающей среды, при которой семена начинают прорастать, называют минимальной. Наилучшая температура для прорастания семян - оптимальная. Высокая температура, при которой возможно появление всходов, называют максимальной. Прорастание семян сопровождается сложными биохимическими и анатомо-физиологическими процессами. Не все семена способны давать всходы сразу после созревания. У растений влажного жаркого климата семена прорастают сразу. В умеренном климате тоже есть растения с легко и быстро прорастающими семенами (серебристые клены, ивы). Цветут эти растения весной, и их семена при благоприятных условиях дают всходы и к осени

образуют окрепшие растения. Семена, не успевшие прорасти, погибают.

Семенам многих цветковых растений для прорастания нужен период покоя. Иногда он вынужденный - когда нет благоприятных условий для прорастания. Семена растений, обитающих в местах с сезонными колебаниями температур и влажности (умеренный, субтропический пояс), могут находиться в органическом покое, который определяется особыми свойствами самого семени. Покоящиеся семена иногда лежат в земле даже набухшими в течение многих лет. Препятствует прорастанию семян твердосемянность (бобовые) - твердая кожура. В природе нарушению целостности такой кожуры и приобретению способности семян к набуханию помогают температурные воздействия: прогревание, промораживание, резкие колебания температур. В практике сельского хозяйства для нарушения целостности твердой кожуры применяют скарификацию (повреждение целостности кожуры с помощью перетирания с песком, битым стеклом в специальных установках или ошпаривание кипятком). Иногда прорастание семян тормозят ферменты, находящиеся на поверхности семян (свекла), - химический покой. Морфологический покой бывает при недоразвитом зародыше. Физиологический покой наблюдается у свежесобранных семян злаков, салата, это неглубокий покой. У семян многих древесных растений существует глубокий физиологический покой. Преодолеть его можно при посеве их осенью или в результате искусственной холодной стратификации - выдерживания семян при пониженной положительной температуре (0...+7° С) во влажной среде (песок) с достаточной аэрацией. Охлаждение набухших семян или облучение светом способствует прорастанию. Есть семена, которым свет для прорастания не нужен (чернушка).

Сухие семена растений имеют разную продолжительность жизни, в течение которой они сохраняют всхожесть. Семена, которые легко прорастают, теряют всхожесть в течение месяцев, недель, дней (ивы). У тыквенных семена сохраняют всхожесть до 5 лет и более. Семена некоторых растений могут пролежать в определенных условиях сотни лет. Так, в торфяниках найдены семена лотоса, сохранившие всхожесть после 1000 лет погребения, а возраст семян люпина, извлеченных из льдов Аляски, достигает 10 000 лет.

Как только вода начинает поступать в семена, в них усиливается дыхание, активируются ферменты. Под их влиянием запасные питательные вещества гидролизуются. После чего зародыш начинает расти за счет деления клеток. Первым выходит наружу, прорвав кожуру, зародышевой корень, чему способствует вставочная меристема подсемядольного колена. Растет корень за счет верхушечной меристемы. У многих растений зародышевый стебель интенсивно растет и выносит семядоли в воздушную среду. Они становятся зелеными и выполняют роль фотосинтезирующих органов. Иногда зародышевый стебель не растет и семядольный узел вместе с семядолями остается в земле. Такое прорастание семян называется подземным (лещина, горох, дуб). В этом случае семядоли выполняют запасающую функцию. Например, у злаков, лука, ириса семядоли выполняют всасывающую функцию, передают питательные вещества из запасающих тканей проростку. Если семядоли выносятся на поверхность земли и становятся зелеными, то такое прорастание называется надземным.

Если две семядоли отходят на разном уровне, то между двумя семядольными узлами располагается мезокотиль. Зародышевый корень дает начало главному корню, от которого отходят боковые, помогающие лучше удерживать растение и обеспечивающие почвенное и водное питание.

Для каждого этапа индивидуального развития растения необходимо сочетание различных факторов среды и внутренних факторов самого растения.

Для наступления стадии проростка на семена необходимо воздействовать неодинаковыми температурами. Этот процесс называется яровизацией. Так, озимые растения, семена которых высевают в начале осени, нуждаются в низких положительных и небольших отрицательных температурах (0 - 5° С). Яровые растения высевают рано весной. Им для прохождения первой стадии нужны положительные температуры, от невысоких к более высоким. Под влиянием разного рода температур у растения закладываются цветки. Для образования цветка необходим запас питательных веществ, поэтому сразу после появления всходов растения зацвести не могут. У одних цветение наступает через 30 - 35 дней после посева, у других - в середине вегетационного периода.

Условия перехода растений к цветению. Большинство растений перед цветением нуждается в воздействии холодом. Так, если свеклу выращивать в тропиках, где не бывает низких температур, способствующих яровизации, то она несколько лет остается в вегетативном состоянии. Но есть растения, которым такое воздействие не нужно (салат). По мнению ученых, до начала цветения после яровизации в конусах нарастания образуются вещества, вызывающие цветение.

Длина светового дня - еще один фактор, влияющий на переход растения к цветению. Это явление получило название фотопериодизма. Было установлено, что растения неодинаково реагируют на длинный и короткий световой день: одни быстрее развиваются при коротком дне, другие - на удлиненном. И есть растения, безразличные к продолжительности освещения. В связи с этим выделяют три группы растений. Растения длинного дня зацветают при светлом дне, длящемся 16 - 20 ч, короткодневные цветут, если световой день продолжается 8 - 12 ч, индиферентные (нейтральные) зацветают при любом световом режиме. Воздействие определенного светового дня нужно не все время, а только в течение фотопериода 10 - 12 дней после появления всходов. Различие между этими группами растений в том, что короткодневные растения (соя, просо, рис, конопля, хризантема, астры) цветут в конце лета - в начале осени. Длиннодневные растения (овес, ячмень, рудбекия, лен, свекла, редис, люпин) цветут в начале лета.

Продолжительность жизни растений. Процессы, происходящие при индивидуальном развитии растения, - это результат его исторического приспособления к различным внешним воздействиям. Можно сказать, что растения в своем индивидуальном развитии повторяют этапы развития своих предков (филогенез).

В течение всей жизни растения растут и развиваются. Индивидуальное развитие растений - это его жизненный цикл. Продолжительность жизни у растений различна. Однолетние растения (просо, гречиха, лебеда) появляются весной из семян, затем зацветают и после этого отмирают, прожив меньше года. У двулетников (капуста, морковь) в первый год жизни развиваются только вегетативные органы, на второй год растение цветет и плодоносит. У многолетних растений жизненный цикл охватывает от нескольких лет до нескольких сотен лет (деревья, кустарники, травы, ландыш, осот, мать-и-мачеха, георгины).

Однолетние, двулетние и некоторые многолетние растения, плодоносящие один раз в жизни, - монокарпические растения. Большинство многолетних растений цветут и плодоносят несколько раз в течение жизни. Это поликарпические растения. К монокарпическим растениям относится особая группа растений - эфемеры. Это однолетние растения, которые к наступлению неблагоприятных условий отцветают и образуют семена. Многолетние поликарпические растения - эфемероиды. Для них характерно, что к моменту наступления неблагоприятных условий они образуют семена и запасают питательные вещества в луковицах или корневищах.

Изучая рост и развитие растений под влиянием факторов среды, человек смог разработать метод биологического контроля за ходом развития сельхозяйственных растений и влиять на повышение урожая. Так, знание процессов яровизации дало возможность получить за 381 день три поколения озимой пшеницы Мироновская 808. Обработав семена холодом, удается заставить их цвести, даже если они посеяны весной. Закаливание семян может повысить урожайность и холодостойкость растений.

В последнее время в практике цветоводства широко используется влияние светового дня на сроки цветения декоративных растений для получения цветущих астр и хризантем летом, а не осенью.

Жизненные формы растений. Окружающий ландшафт создает внешний облик - габитус растений. Под влиянием комплекса условий окружающей среды растения в процессе исторического развития приобрели различные приспособления, которые выражаются в особенностях обмена веществ, строении, способах нарастания и динамике жизненных процессов. Все это отражается во внешнем облике растений. Внешний облик растений, исторически сложившийся под влиянием факторов среды, называется жизненной формой. Термин «жизненная форма» был введен в 80-х годах прошлого века датским ботаником Е. Вармингом.

Несмотря на то, что жизненная форма - экологическое понятие, следует отличать его от понятия экологические группы растений. Жизненные формы отражают приспособленность растений ко всему комплексу экологических факторов в отличие от экологических групп, отражающих приспособленность организмов к отдельным факторам среды (свет, тепло, характер почв, влажность). Представители одной и той же жизненной формы могут принадлежать к разным экологическим группам.

Существуют разные классификации жизненных форм. Одна из них состоит в том, что внешний облик определенных групп растений, исторически сложившийся под влиянием факторов среды, определяет физиономическую классификацию. По этой классификации различают деревья, кустарники, кустарнички, полукустарнички, травянистые поликарпики и травянистые монокарпики.

1. Деревья - многолетние растения с одним одревесневшим стволом, который сохраняется всю жизнь.

2. Кустарники - многолетние растения с несколькими равноценными стволами, так как ветвление начинается от самой земли.

3. Кустарнички. К ним относятся брусника, вереск, голубика, багульник. Это низкорослые растения (от 5 - 7 до 50 - 60 см). Ветвление под землей, в результате чего образуются несколько одревесневших сильно ветвящихся стволиков.

4. Полукустарники (полукустарнички). Это многие полыни, прутняк, терескен. Для этих растений характерно отмирание верхних неодревесневших надземных побегов. Одревесневшие части стеблей сохраняются несколько лет. Ежегодно из почек возобновления образуются новые травянистые побеги.

5. Травы. Многолетние и однолетние растения, у которых на зиму отмирает надземная часть растения или все растение. Они делятся на травянистые поликарпики и травянистые монокарпики. К травянистым поликарпикам относятся стержнекорневые растения (люцерна, шалфей, сон-трава, горечавка, одуванчик). Среди этой группы можно встретить форму перекати-поле (качим) и подушковидную форму (смолевка, камнеломка).

Кроме того, в этой группе есть кистекорневые и короткокорневищные растения (лютики, калужница, манжетка, купена), а также длиннокорневищные (пырей ползучий), столонообразующие поликарпики (фиалка удивительная, земляника); ползучие (вероника лекарственная) и клубнеобразующие поликарпики (любка двулистная, шафран), а также луковичные поликарпики (эфемероиды гусиный лук, тюльпан).

Лекция № 8

Систематика растений

1. Методы исследования в систематике.

2. Понятие о виде.

Систематика растений изучает многообразие растительных организмов. Основная задача систематики - классификация огромного многообразия растений. Современная систематика развивается в тесной связи с другими науками: морфологией, цитологией, генетикой, биохимией, эмбриологией, экологией, биогеографией и др. Теоретической основой систематики служит эволюционное учение. «Систематика есть одновременно и фундамент, и венец биологии, ее начало и конец. Без систематики мы никогда не поймем жизни в ее изумительном многообразии, возникшем в результате долгой эволюции» (А.Л.Тахтаджян, 1974).

Современная систематика включает три раздела: таксономию, номенклатуру и филогенетику.

Таксономия изучает теорию и практику классификации организмов, т.е. распределение огромного множества уже известных и вновь открытых организмов в соответствии с их сходством и различиями по определенным соподчиненным друг другу таксономическим единицам. Основная таксономическая единица для всей биологии - вид. Каждый вид принадлежит к какому-либо роду, род - к семейству, семейство - к порядку, порядок - к классу, класс - к отделу, отдел - к царству. Это иерархическая система классификации. Каждый вид имеет двойное, или бинарное, название: родовое и видовое. Например, клевер ползучий –Trifolium repens L. После названия вида заглавной буквой ставится фамилия ученого, открывшего этот вид. Бинарная номенклатура введена и опубликована в 1753 г. в труде известного шведского ученого Карла Линнея «Species plantarum» («Виды растений»).

Вся совокупность существующих названий таксонов и система правил, регулирующих установление и использование этих названий, относится к разделу номенклатуры. Главная задача номенклатуры - стабильная система названий. Существуют правила образования названий для различных таксономических категорий в целях определения их уровня: например, для семейства в латинском названии используется окончание - сеае (семейство Бобовые - Fаbасеае, Лютиковые - Ranunculасеае и т.д.), для порядков - а1еs (порядок Бобовоцветные – Fabales), для отделов - рhyta (отдел Цветковые растения - Magnoliophyta, отдел Зеленые водоросли - Сhlorophyts и т.д.). Существует международный кодекс ботанической номенклатуры, который совершенствуется и утверждается на ботанических конгрессах раз в шесть лет.

Филогенетика устанавливает родство организмов в историческом плане, восстанавливает филогенез всех живых организмов в целом и отдельных систематических групп.

Каждый таксон обладает совокупностью морфологических, анатомических, экологических и ряда других характеристик, а также определенными способами размножения (бесполое, вегетативное и половое).

Все растения делят на две большие группы: низшие и высшие. У низших растений вегетативное тело не расчленено на органы (корень, стебель, лист) и представлено талломом, или слоевищем. Слоевище может быть как одноклеточным, так и многоклеточным. У высших споровых и семенных растений тело расчленено на вегетативные органы, состоящие из разнообразных тканей, выполняющих разные функции.

Из низших растений в данном пособии кратко рассматривают­ся следующие отделы: Синезеленые водоросли, Зеленые, Бурые, Красные, Диатомовые водоросли, Лишайники. Из высших споровых растений - отделы Моховидные, Плауновидные, Хвощевидные, Папоротниковидные; из семенных - Голосеменные и Цветковые растения.

Методы исследования в систематике. Как и любая наука, систематика растений имеет свои методы исследования для решения основных задач. Одна из существенных задач - выяснение сходства и различия между таксонами. Историческую последовательность происхождения того или иного таксона, родство таксонов в общих чертах можно установить, изучая ископаемые растительные остатки. С помощью палеоботанических находок можно восстановить эволюцию отдельных растений и даже целых флор на нашей планете. Однако этого недостаточно: нужны косвенные доказательства. Среди косвенных методов познания филогении большую роль играет сравнительно-морфологический - основной метод систематики. Этим методом изучают макроструктуру организмов, он не требует специального оборудования, им пользовались ботаники еще до изобретения микроскопа. С развитием и совершенствованием микроскопической техники сравнительно-морфологический метод стали использовать более точно.

Эмбриологический, сравнительно-анатомический и онтогенетический методы - варианты сравнительно-морфологического метода. С их помощью изучают микроскопические структуры тканей, зародышевых мешков, последовательность развития гаметогенеза и т. п. Сравнительно-цитологический и кариологический методы помогают анализировать признаки организмов на клеточном уровне, на уровне кариотипа. Методы молекулярной биологии дают возможность сравнительного изучения геномного сходства таксонов. С помощью спорово-пылъцевого анализа - палинологического метода при хорошо сохранившихся оболочках спор и пыльцы вымерших растений устанавливают возраст отложений и характер флор того времени. В систематике используют также методы определения химического состава растений, иммунологические (устанавливают родство организмов на основе сходства биологической активности белка), физиологические (определяют морозо- или засухоустойчивость растений и др.), эколого-генетический (дает возможность узнать границы фенотипической реакции таксона, изучить изменчивость и подвижность признаков в зависимости от экологических факторов), гибридологический (основан на изучении гибридизации таксонов). В систематике растений иногда используют математические, географические, археологические и другие методы.

Объектами исследований в систематике служат живые растения или их фиксированные части (гербарии, коллекции крупных плодов, шишек, спилов древесины и др.), а также жидкие фиксаторы в спирту или формалине.

Понятие о виде. Со времен Карла Линнея основными систематическими единицами в органическом мире считаются род и вид. К. Линней считал виды неизменными и постоянными. Д. Рей впервые дал определение вида как совокупности особей, происшедших из семян одного растения. Ч.Дарвин считал, что вид - явление историческое и динамическое: вид развивается, достигает полного развития, а затем клонится к упадку (вследствие изменения жизни и борьбы с другими видами) и исчезает. Виды возникают из разновидностей (более мелких единиц, чем вид); разновидности - это «зачинающиеся виды». В дальнейшем понятие о виде совершенствовалось, уточнялось, однако до сих пор не существует его точного определения. Многие систематики пытались дать определение вида. Одно из наиболее распространенных принадлежит В.Л.Комарову (1945): «...вид есть совокупность поколений, происходящих от общего предка и под влиянием среды и борьбы за существование обособленных отбором от остального мира живых существ; вместе с тем вид есть этап в процессе эволюции». Вид обладает определенным устойчивым географическим ареалом, территорией, за пределами которой он практически не встречается, т.е. каждый вид обитает в сходных экологических условиях, имеет общий ареал и т.д.

В природе виды представлены совокупностью особей - попу­ляциями, способных к скрещиванию с образованием плодовитого потомства, населяющих определенный ареал, обладающих рядом общих морфологических признаков и разных типов взаимоотношений со средой обитания и отделенных от других таких же совокупностей особей барьером нескрещиваемости. Преобладающее большинство ученых, начиная с Ч.Дарвина, считают, что видообразование происходит под действием естественного отбора путем дивергенции - разветвления предкового вида на два или не­сколько новых. Поэтому принято выделять более дробные таксоны - подвиды, разновидности, формы, или морфы.

Подвиды - более мелкие таксоны внутри вида, обладающие своим ареалом, например многие полиморфные виды: щавель обыкновенный, облепиха крушиновидная и др.

Разновидности еще менее различаются между собой, чем подвиды, они не имеют даже собственного ареала, признаки закреплены наследственно.

Формы, или морфы, - таксоны с еще более мелкими отличиями от вида, которые возникают и изменяются под действием внешней среды и не закреплены наследственно.

Сорт - группа особей в пределах вида, подвида, разновидности, отличающаяся рядом наследственно стойких признаков (крупноплодность, слабая околюченность, высокая урожайность и др.), не передающихся по наследству и имеющих важное народнохозяйственное значение. При семенном размножении по закону Менделя происходит расщепление в потомстве, поэтому для сохранения материнских признаков сорта обычно размножают вегетативно. Среди всех культурных растений известно множество сортов, например, у облепихи, относительно молодой плодовой культуры, известно более 150 сортов.

Близкие по совокупности признаков виды объединяются в роды. Роды по принципу общности происхождения объединяются в семейства, семейства - в порядки, порядки - в классы и т.д. Внутри порядков и классов есть более мелкие таксоны: подпорядки, подклассы.

Лекция № 9

Систематика высших споровых растений

ЦАРСТВО РАСТЕНИЯ – РLАNТАЕ

В современной систематике царство Растения делят на три подцарства: Багрянки, или Красные водоросли; Настоящие водоросли и Высшие растения, или Листостебельные. Багрянки часто называют низшими растениями: вегетативное тело их не расчленено на органы и ткани и также называется талломом. Однако у багрянок по сравнению с настоящими водорослями есть некоторые отличия.

Особая, космическая роль зеленых растений состоит в том, что без них невозможна жизнь всех других живых организмов, в том числе и человека. Только хлорофилл, содержащийся в зеленых ра­стениях, способен аккумулировать энергию солнца и превращать ее в энергию химических связей, что ведет к образованию органического вещества из неорганических веществ.

ПОДЦАРСТВО ВЫСШИЕ РАСТЕНИЯ – ЕМВRУОРНУТА

Высшие растения - наиболее дифференцированные автотрофные многоклеточные организмы, приспособленные главным образом к наземной среде.

Тело подавляющего большинства высших растений расчленено на побеги (стебли и листья) и корни. Высшие растения имеют ткани. Формирование тканей - неизбежный результат переселения растений из водной среды на сушу. Питательные вещества всасываются не всей поверхностью растения, как у водных, а специализированными проводящими клетками.

В подцарстве не менее 300 тыс. ныне существующих видов и огромное число вымерших. Известные виды высших растений делят на 9 отделов:

1. Риниевые.

2. Зостерофилловые.

3. Моховидные.

4. Плауновидныеа.

5. Псилотовидные.

6. Хвощевидные.

9. Покрытосеменные, или Цветковые.

Риниевые и зостерофилловые полностью вымерли. В остальных отделах есть как вымершие, так и ныне существующие виды. Среди высших растений (за исключением моховидных) спорофит преобладает над гаметофитом. В органах спорофита есть сосуды и трахеиды, поэтому их еще называют сосудистыми растениями.

Высшие растения делят на две очень неравные по значению и количеству видов группы - высшие споровые и семенные растения. У высших споровых гаметофиты и спорофиты - самостоятельные растения (за исключением моховидных, у которых спорофит развивается на гаметофите). Размножаются споровые растения спорами. К споровым относятся все отделы, кроме голосеменных и покрытосеменных растений.

Голосеменные и покрытосеменные - семенные растения, размножающиеся семенами. У семенных растений спорогенез и гаметогенез тесно связаны между собой. В процессе эволюции произошла сильная редукция женского и мужского гаметофита, поэтому редуцированный женский гаметофит (зародышевый мешок) развивается на спорофите, а мужской гаметофит (пылинка) переносится к яйцеклетке целиком. В результате оплодотворения яйцеклетки образуется диплоидная зигота, из которой развивается зародыш, окруженный специальными оболочками, или покровами. Зародыш с покровами образует семя. У голосеменных семена на семенных чешуях лежат открыто, а у покрытосеменных они находятся внутри завязи пестика, образованного одним или несколькими плодолистиками.

Считают, что высшие растения произошли от низших - обитателей водной среды, непосредственно из зеленых и бурых водорослей.

У растений существует множество способов размножения. При этом у разных систематических групп растений есть свои особенности размножения, так или иначе сочетающие несколько способов. Способы размножения можно классифицировать по-разному. Наиболее простой и понятный вариант, это когда выделяют половое и бесполое размножение . В свою очередь бесполое размножение делят на вегетативное и спорообразование .

  • Половое размножение
  • Бесполое размножение
    • Вегетативное
    • Спорообразование

Половое размножение растений

Отличительной особенностью полового размножения является то, что происходит слияние половых клеток двух растений. В результате в дочернем растении комбинируются признаки родительских.

Половая клетка женского типа называется яйцеклеткой . Половые клетки мужского типа называются сперматозоидами (если они подвижны) или спермиями (если они не подвижны).

В половых клетках содержится одинарный набор хромосом. (В хромосомах хранится наследственная информация о строении и работе клеток организма.) Клетки, составляющие тело большинства групп растений, содержат удвоенный набор хромосом. Поэтому, когда половые клетки сливаются, то восстанавливается двойной набор хромосом.

Половое размножение у разных систематических групп растений имеет свои особенности. Так, например, у покрытосеменных и голосеменных растений при половом размножении образуются семена . Пыльца, в которой созревают спермии, переносится к органам (пестикам цветков или женским шишкам), где созревают яйцеклетки. После оплодотворения (слияния яйцеклетки со спермием и образования зиготы) в женском органе развивается семя. Оно содержит зародыш нового растения и питательные вещества. Запас питательных веществ увеличивает шансы зародыша на удачное прорастание.

Главными преимуществами семенных растений (покрытосеменных и голосеменных) является то, что 1) для доставки мужских половых клеток им не нужна вода, 2) семя содержит запас питательных веществ. Эти преимущества позволили им расселиться по суше более широко, чем остальные группы растений.

Особенностью полового размножения мхов является то, что у них зеленое растение содержит одинарный набор хромосом, а не двойной, как у большинства организмов. На взрослых растениях мхов с одинарным набором хромосом образуются яйцеклетки и сперматозоиды также с одинарным набором хромосом (что является обычным для половых клеток). Далее сперматозоиды подплывают к яйцеклеткам, которые остаются на взрослом растении, и оплодотворяют их. Из зиготы развивается дочернее растение, содержащее двойной набор хромосом, но это «растение» не покидает материнское и растет прямо на нем, а также питается за его счет. Это дочернее образование является спорофитом , в то время как родительские растения называются гаметофитом . Спорофит у мхов выглядит как коробочка на ножке. В коробочке созревают споры, при созревании которых двойной набор хромосом снова становится одинарным. Когда споры высыпаются из коробочки из них вырастает зеленое растение мха.

Тело папоротников, в отличие от мхов, имеет двойной набор хромосом. На этих растениях образуются споры с одинарным набором хромосом. Они покидают родительские растения и прорастают в так называемые заростки, имеющие в своих клетках одинарный набор хромосом. На заростках образуются яйцеклетки и сперматозоиды. Сперматозоиды подплывают к заросткам, содержащим яйцеклетки, происходит оплодотворение. Из зиготы развивается обычное растение папоротника с двойным набором хромосом. Это молодое растение сначала питается за счет заростка и растет как бы из него. Потом заросток отмирает.

Для мхов, папоротников и других групп споровых растений характерна зависимость от воды. Сперматозоиды могут оплодотворить яйцеклетку, только подплыв к ней по воде.

Бесполое размножение растений

При бесполом размножении в образовании нового организма участвует только один родительский организм.

Вегетативное размножение

Вегетативное размножение представляет собой размножение с помощью частей тела взрослого растения. Так отделившийся побег, лист, корневище цветкового растения или таллом водоросли могут дать начало новому растению. Это новое растение по набору генов будет идентично родительскому.

Спорообразование

Как уже выше было описано высшие споровые растения (к ним относятся мхи, папоротники и некоторые другие) образуют споры. У таких растений гаметофит чередуется со спорофитом. Споры образует спорофит (у папоротников это взрослое зеленое растение, у мхов коробочка на ножке). Спор образуется много, и они разносятся ветром и водой на большие расстояния. Поэтому спорообразование является одним из видов размножения.

У водорослей (они относятся к низшим растениям) также образуются споры. Они могут являться как средством размножения, так и способом переживания неблагоприятных условий. Водоросли способны и к половому размножению.



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения