Подпишись и читай
самые интересные
статьи первым!

Деформация. Виды деформаций твердых тел

Деформация (англ. deformation ) - это изменение формы и размеров тела (или части тела) под действием внешних сил, при изменении температуры, влажности, фазовых превращениях и других воздействиях, вызывающих изменение положения частиц тела. При увеличении напряжения деформация может закончиться разрушением. Способность материалов сопротивляться деформации и разрушению под воздейстивем различного вида нагрузок характеризуется механическими свойствами этих материалов.

На появление того или иного вида деформации большое влияние оказывает характер приложенных к телу напряжений. Одни процессы деформации связаны с преобладающим действием касательной составляющей напряжения, другие - с действием его нормальной составляющей.

Виды деформации

По характеру приложенной к телу нагрузки виды деформации подразделяют следующим образом:

  • Деформация растяжения;
  • Деформация сжатия;
  • Деформация сдвига (или среза);
  • Деформация при кручении;
  • Деформация при изгибе.

К простейшим видам деформации относятся: деформация растяжения, деформация сжатия, деформация сдвига. Выделяют также следующие виды деформации: деформация всестороннего сжатия, кручения, изгиба, которые представляют собой различные комбинации простейших видов деформации (сдвиг, сжатие, растяжение), так как сила приложенная к телу, подвергаемому деформации, обычно не перпендикулярна его поверхности, а направлена под углом, что вызывает как нормальные, так и касательные напряжения. Изучением видов деформации занимаются такие науки, как физика твёрдого тела, материаловедение, кристаллография.

ИЦМ(www.сайт)

В твёрдых телах, в частности - металлах, выделяют два основных вида деформаций - упругую и пластическую деформацию, физическая сущность которых различна.

Деформация металла. Упругая и пластическая деформация

Влияние упругой (обратимой) деформации на форму, структуру и свойства тела полностью устраняется после прекращения действия вызвавших её сил (нагрузок), так как под действием приложенных сил происходит только незначительное смещение атомов или поворот блоков кристалла. Сопротивление металла деформации и разрушению называется прочностью. Прочность является первым требованием, предъявляемым к большинству изделий.

Модуль упругости - это характеристика сопротивления материалов упругой деформации. При достижении напряжениями так называемого предела упругости (или порога упругости ) деформация становится необратимой.

Пластическая деформация , остающаяся после снятия нагрузки, связана с перемещением атомов внутри кристаллов на относительно большие расстояния и вызывает остаточные изменения формы, структуры и свойств без макроскопических нарушений сплошности металла. Пластическую деформацию также называют остаточной или необратимой. Пластическая деформация в кристаллах может осуществляться скольжением и двойникованием .

ИЦМ(www.сайт)

Пластическая деформация металла . Для металлов характерно большее сопротивление растяжению или сжатию, чем сдвигу. Поэтому процесс пластической деформации металла обычно представляет собой процесс скольжения одной части кристалла относительно другой по кристаллографической плоскости или плоскостям скольжения с более плотной упаковкой атомов, где наименьшее сопротивление сдвигу. Скольжение осуществляется в результате перемещения в кристалле дислокаций. В результате скольжения кристаллическое строение перемещающихся частей не меняется.

Другим механизмом пластической деформации металла является двойникование . При деформации двойникованием напряжение сдвига выше, чем при скольжении. Двойники обычно возникают тогда, когда скольжение по тем или иным причинам затруднено. Деформация двойникованием обычно наблюдается при низких температурах и высоких скоростях приложения нагрузки.

Пластичность - это свойство твёрдых тел под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные (пластические) деформации после устранения этих сил. Отсутствие или малое значение пластичности называется хрупкостью. Пластичность металлов широко используется в технике.

Подготовлено: Корниенко А.Э. (ИЦМ)

Лит.:

  1. Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. - 2-е изд., перераб. и доп. – М.: Высш.шк., 1986. - 199 с.: ил. - (Профтехобразование). ББК 34.2. Ж 86. УДЖ 620.1
  2. Гуляев А.П. Металловедение. - М.: Металлургия, 1977. - УДК669.0(075.8)
  3. Солнцев Ю.П., Пряхин Е.И., Войткун Ф. Материаловедение: Учебник для вузов. - М.: МИСИС, 1999. - 600 с. - УДК 669.017

ДЕФОРМАЦИЯ – изменение размеров, формы и конфигурации тела в результате действия внешних или внутренних сил (от лат. deformatio – искажение).

Твердые тела способны в течение длительного времени сохранять неизменной свою форму и объем, в отличие от жидких и газообразных. Это известное утверждение справедливо только «в первом приближении» и нуждается в уточнениях. Во-первых, многие тела, которые принято считать твердыми, с течением времени очень медленно «текут»: известен случай, когда гранитная плита (часть стенки) за несколько сот лет, вследствие осадки почвы, заметно изогнулась, следуя новому микрорельефу, причем без трещин и изломов (рис. 1). Было подсчитано, что характерная скорость перемещения при этом составляла 0,8 мм в год. Второе уточнение состоит в том, что все твердые тела изменяют свою форму и размеры, если на них действуют внешние нагрузки. Эти изменения формы и размеров называют деформациями твердого тела, причем деформации могут быть большими (например, при растяжении резинового шнура или при изгибе стальной линейки) или малыми, незаметными для глаза (например, деформации гранитного постамента при установке памятника).

С точки зрения внутреннего строения многие твердые тела являются поликристаллическими, т.е. состоят из мелких зерен, каждое из которых является кристаллом, имеющим решетку определенного типа. Стекловидные материалы и многие пластмассы не имеют кристаллической структуры, но их молекулы очень тесно связаны между собой и это обеспечивает сохранение формы и размеров тела.

Если на твердое тело действуют внешние силы (например, стержень растягивается двумя силами, рис. 2), то расстояния между атомами вещества увеличиваются, и с помощью приборов можно обнаружить увеличение длины стержня. Если нагрузки убрать, стержень восстанавливает прежнюю длину. Такие деформации называются упругими, они не превышают долей процента. При возрастании растягивающих сил может быть два исхода опыта: образцы из стекла, бетона, мрамора и т.д. разрушаются при наличии упругих деформаций (такие тела называются хрупкими). В образцах из стали, меди, алюминия наряду с упругими появятся пластические деформации, которые связаны с проскальзыванием (сдвигом) одних частиц материала относительно других. Величина пластических деформаций обычно составляет несколько процентов. Особое место среди деформируемых твердых тел занимают эластомеры – каучукоподобные вещества, допускающие огромные деформации: резиновую полоску можно вытянуть в 10 раз, без разрывов и повреждений, а после разгрузки первоначальный размер восстанавливается практически мгновенно. Деформация такого типа называется высокоэластической и связана с тем, что материал состоит из очень длинных полимерных молекул, свернутых в виде спиралей («винтовых лестниц») или гармошек, причем соседние молекулы образуют упорядоченную систему. Длинные многократно изогнутые молекулы способны распрямляться за счет гибкости атомных цепочек; при этом расстояния между атомами не меняются, и малые силы достаточны для получения больших деформаций за счет частичного распрямления молекул.

Тела деформируются под действием приложенных к ним сил, под влиянием изменения температуры, влажности, химических реакций, облучения нейтронами. Проще всего понять деформацию под действием сил – часто их называют нагрузками: балка, закрепленная по концам на опорах и нагруженная в середине, изгибается – деформация изгиба; при просверливании отверстия сверло испытывает деформацию кручения; когда мяч накачивают воздухом, он сохраняет шаровую форму, но увеличивается в размерах. Земной шар деформируется, когда по его поверхностному слою идет приливная волна. Даже эти простые примеры показывают, что деформации тел могут быть очень различными. Обычно детали конструкций в нормальных условиях испытывают малые деформации, при которых и форма их почти не изменяется. Наоборот, при обработке давлением – при штамповке или прокатке – происходят большие деформации, в результате которых форма тела существенно изменяется; например, из цилиндрической заготовки получается стакан или даже деталь очень сложной формы (при этом заготовку часто нагревают, что облегчает процесс деформирования).

Самым простым для понимания и математического анализа является деформирование тела при малых деформациях. Как это принято в механике, рассматривается некоторая произвольно выбранная точка М тела.

Перед началом процесса деформирования мысленно выделяется малая окрестность этой точки, имеющая простую форму, удобную для изучения, например, шар радиуса D R или куб со стороной D a , причем так, чтобы точка M оказалась центром этих тел.

Несмотря на то, что тела различной формы под влиянием внешних нагрузок и других причин получают весьма разнообразные деформации, оказывается, что малая окрестность любой точки деформируется по одному и тому же правилу (закону): если малая окрестность точки M имела форму шара, то после деформации она становится эллипсоидом; аналогично, куб становится косым параллелепипедом (обычно говорят, что шар переходит в эллипсоид, а куб – в косой параллелепипед). Именно это обстоятельство одинаково во всех точках: эллипсоиды в разных точках, конечно, получаются разными и по-разному повернутыми. То же касается и параллелепипедов.

Если в недеформированной сфере мысленно выделить радиальное волокно, т.е. материальные частицы, расположенные на некотором радиусе, и проследить за этим волокном в процессе деформирования, то обнаруживается, что это волокно все время остается прямым, но изменяет свою длину – удлиняется или укорачивается. Важную информацию можно получить следующим образом: в недеформированной сфере выделяются два волокна, угол между которыми – прямой. После деформации угол, вообще говоря, станет отличным от прямого. Изменение прямого угла называется сдвиговой деформацией или сдвигом. Суть этого явления удобнее рассмотреть на примере кубической окрестности, при деформации которой квадратная грань переходит в параллелограмм – этим объясняется название сдвиговой деформации.

Можно сказать, что деформация окрестности точки M известна полностью, если для любого радиального волокна, выбранного до деформации, можно найти его новую длину, и для двух любых таких взаимно перпендикулярных волокон – угол между ними после деформации.

Отсюда следует вывод, что деформация окрестности известна, если известны удлинения всех волокон и все возможные сдвиги, т.е. требуется бесконечно большое количество данных. На самом деле деформация частицы происходит очень упорядоченно – ведь шар переходит в эллипсоид (а не разлетается на кусочки и не превращается в нить, которая завязывается узлами). Эта упорядоченность выражается математически теоремой, суть которой состоит в том, что удлинения любого волокна и сдвиг для любой пары волокон можно вычислить (причем довольно просто), если известны удлинения трех взаимно перпендикулярных волокон и сдвиги – изменения углов между ними. И конечно, суть дела совершенно не зависит от того, какая форма выбрана для частицы – шаровая, кубическая или какая-нибудь еще.

Для более конкретного и более строгого описания картины деформации вводится система координат (например, декартовых) OXYZ , выбирается в теле некоторая точка M и ее окрестность в виде куба с вершиной в точке M , ребра которого параллельны осям координат. Относительное удлинение ребра, параллельного оси OX , –e xx (В этом обозначении индекс x повторен дважды: так принято обозначать элементы матриц).

Если рассматриваемое ребро куба имело длину a , то после деформации его длина изменится на величину удлинения D a x , при этом относительное удлинение, введенное выше, выразится как

e xx = D a x / a

Аналогичный смысл имеют величины e yy и e zz .

Для сдвигов принимаются следующие обозначения: изменение первоначально прямого угла между ребрами куба, параллельными осями OX и OY , обозначается как 2e xy = 2e yx (здесь коэффициент «2» вводится для удобства в дальнейшем, как если бы диаметр некой окружности обозначался 2r ).

Таким образом, введено 6 величин, а именно три деформации удлинения:

e xx e yy e zz

и три деформации сдвига:

e yx = e xy e zy = e yz e zx = e xz

Эти 6 величин называют компонентами деформации, при этом в это определение вкладывается тот смысл, что через них выражается любая деформация удлинения и сдвига в окрестности данной точки (часто говорят сокращенно – просто «деформация в точке»).

Компоненты деформации можно записать в виде симметричной матрицы

Эта матрица называется тензором малых деформаций, записанным в системе координат OXYZ . В другой системе координат с тем же началом этот же тензор будет выражаться другой матрицей, с компонентами

Оси координат новой системы составляют с осями координат старой системы набор углов, косинусы которых удобно обозначить так, как это сделано в следующей таблице:

Тогда выражение компонент тензора деформации в новых осях (т.е. e ´ xx ,…, e ´ xy ,…) через компоненты тензора деформаций в старых осях, т.е. через e xx,…, e xy ,…, имеют вид:

Эти формулы, по существу, являются определением тензора в следующем смысле: если некоторый объект описывается в системе OXYZ матрицей e ij , а в другой системе OX ´Y ´Z ´ – другой матрицей e ij ´, то он называется тензором, если имеют место приведенные выше формулы, которые называются формулами преобразования компонент тензора второго ранга к новой системе координат. Здесь, для краткости, матрица обозначена символом e ij , где индексы i , j соответствуют любому попарному сочетанию индексов x , y , z ; существенно, что индексов обязательно два. Число индексов называется рангом тензора (или его валентностью). В этом смысле вектор оказывается тензором первого ранга (его компоненты имеют один индекс), а скаляр можно рассматривать как тензор нулевого ранга, не имеющий индексов; в любой системе координат скаляр имеет, очевидно, то же самое значение.

Первый тензор в правой части равенства называется шаровым, второй – девиатором (от лат. deviatio – искажение), т.к. он связан с искажениями прямых углов – сдвигами. Название «шаровой» связано с тем, что матрица этого тензора в аналитической геометрии описывает сферическую поверхность.

Владимир Кузнецов

Главным отличием твердого тела от жидкостей и газов является его способность сохранять форму, если на тело не действуют слишком большие силы. Если попытаться деформировать твердое тело возникают силы упругости, которые препятствуют деформации.

Определения деформации твердого тела

ОПРЕДЕЛЕНИЕ

Деформацией называют внешнее механическое воздействие на тело, которое приводит к изменению его объема и (или) формы.

Деформация в твердом теле называется упругой, если она пропадает после того, как нагрузку с тела сняли.

Деформация называется пластической (остаточной), если после снятия нагрузки она не исчезает или исчезает не полностью.

Одни и те же тела могут быть упругими и пластичными, это зависит от характера деформации. Так при увеличении нагрузки свыше некоторого предела упругие деформации могут переходить в пластические.

Виды деформации твердых тел

Любые деформации твердого тела можно свести к двум типам: растяжению (сжатию) и сдвигу.

Один конец стержня закрепим, а к другому приложим силу , направленную вдоль его оси, в сторону от его конца. В таком случае стержень будет подвергнут деформации растяжения. Такую деформацию характеризуют при помощи абсолютного удлинения (), которое равно:

где - длина стержня до воздействия на него силы; l - длина растянутого стержня.

Часто применяют для характеристики деформации тела относительное удлинение ():

Если , то такая деформация считается малой. У большинства твердых тел при малых деформациях проявляются упругие свойства.

Если на стержень, конец которого закреплен воздействовать с силой вдоль его оси, но по направлению к концу стержня, то данное тело будет испытывать деформацию сжатия.

При растяжении считают, что title="Rendered by QuickLaTeX.com" height="16" width="47" style="vertical-align: -4px;"> при сжатии .

При деформации растяжения и сжатия площадь поперечного сечения тела изменяется. При растяжении уменьшается, при сжатии увеличивается. Однако, при небольших деформациях данным эффектом, обычно пренебрегают.

Деформацией сдвига называют такой вид деформации, при котором происходит взаимное смещение параллельных слоев материала под воздействием деформирующих сил. Рассмотрим параллелепипед из резины, закрепим его нижнее основание на горизонтальной поверхности. К верхней грани бруска приложим силу, параллельную верхней грани. При этом слои бруска сдвинутся, оставаясь параллельными, вертикальные грани параллелепипеда будут оставаться плоскими, отклонятся от вертикали на некоторый угол .

Закон Гука

При небольших деформациях растяжения (сжатия) между деформирующей силой (F) и абсолютным удлинением . Гуком была установлена связь:

где k - коэффициент упругости (жесткость).

Закон Гука часто записывают иначе. При этом вводится понятие напряжения ():

где S - площадь поперечного сечения тела (стержня). При небольших деформациях напряжение прямо пропорционально относительному удлинению:

где E - модуль упрости или модуль Юнга, который равен напряжению, появляющемуся в стержне, если его относительное удлинение равно единице (или при двойном удлинении длины тела). На практике кроме резины при упругой деформации двойного удлинения невозможно достичь, тело рвется. Модуль Юнга определяют при помощи выражения (5), в измерениях напряжения и относительного удлинения.

Коэффициент упругости и модуль Юнга связаны как:

Примеры решения задач

ПРИМЕР 1

Задание Стена высотой м построена из кирпича плотностью . Каково напряжение у основания этой стены?
Решение В нашей задаче деформирующей силой являются сила тяжести, которая сжимает стену:

Зная плотность кирпича, из которого сложена, стена массу найдем как:

где S площадь основания стены.

По определению напряжение () равно отношению величины силы деформации (F) к площади сечения деформируемого тела:

Подставим вместо массы правую часть выражения (1.2), получим:

Проведем вычисления:

Ответ Па

ПРИМЕР 2

Задание Тело, изготовленное из материала, плотность которого () меньше плотности воды, удерживает под водой пружина (рис.2). Какова величина растяжения пружины под водой (), если то же самое тело в воздухе растягивает его на величину удлинения равную ? Плотность воды считать равной . Объем пружины не учитывать.
Решение Сделаем рисунок.

Будем считать, что наше тело маленький шарик. На шарик в состоянии затопления (рис.2) действуют сила Архимеда (); сила тяжести () и сила упругости пружины (). Шарик находится состоянии покоя, значит, второй закон Ньютона запишем как:

деформация биоткань механический костный сосуд

Деформацией называется изменение взаимного расположения точек тела, которое сопровождается изменением его форм и размеров, обусловленное действием внешних сил на тело.

Виды деформации:

1. Упругая - полностью исчезает после прекращения действия внешних сил.

2. Пластическая (остаточная) - остается после прекращения действия внешних сил.

3. Упруго-пластическая - неполное исчезновение деформации.

4. Вязко-упругая - сочетание вязкого течения и эластичности.

В свою очередь упругие деформации бывают следующих видов:

а) деформация растяжения или сжатия происходит под действием сил, действующих в направлении оси тела:

Основные характеристики деформации

Деформация растяжения (сжатия) возникает в теле при действии силы, направленной вдоль его оси.

где l 0 - исходный линейный размер тела.

Дl - удлинение тела

Деформация е (относительное удлинение) определяется по формуле

е - безразмерная величина.

Мерой сил, стремящихся вернуть атомы или ионы в первоначальное положение является механическое напряжение у. При деформации растяжения напряжение у можно определить отношением внешней силы к площади поперечного сечения тела:

Упругая деформация подчиняется закону Гука:

где Е - модуль нормальной упругости (модуль Юнга - это механическое

напряжение, которое возникает в материале при увеличении

первоначальной длины тела в два раза).

Если живые ткани мало деформируется, то в них целесообразно определять не модуль Юнга, а коэффициент жесткости. Жесткость характеризует способность физической среды сопротивляться образованию деформаций.

Представим экспериментальную кривую растяжения:

ОА - упругая деформация, подчиняющася закону Гука. Точка В - это предел упругости т.е. максимальное напряжение при котором ещё не имеет место деформация, остающаяся в теле после снятия напряжения. ВД - текучесть (напряжение, начиная с которого деформация возрастает без увеличения напряжения).

Упругость, свойственную полимерам называют эластичностью.

Всякий обрзец, подвергнутый сжатию или растяжению вдоль его оси, деформируется так же и в перпендикулярном направлении.

Абсолютное значение отношения поперечной деформации к продольной деформации образца называется коэффициентом поперечной деформации или коэффициентом Пуассона и обозначается:

(безразмерная величина)

Для несжимаемых материалов (вязкотекучие пасты; резины) м=0,5; для большинства металлов м?0,3.

Величина коэффициента Пуассона при растяжении и сжатии одна и та же. Таким образом, определяя коэффициент Пуассона можно судить о сжимаемости материала.

Реологическое моделирование биотканей

Реология - это наука о деформациях и текучести вещества.

Упругие и вязкие свойства тел легко моделируются.

Представим некоторые реологические модели.

а) Модель упругого тела - это упругая пружина.

Напряжение, возникающее в пружине, определяется законом Гука:

Если упругие свойства материала одинаковы во всех направлениях, то он называется изотропным, если эти свойства неодинаковы - анизотропным.

б) Модель вязкой жидкости - это жидкость, находящаяся в цилиндре с поршнем, неплотно прилегающим к его стенкам или: - это поршень с отверстиями, который движется в цилиндре с жидкостью.

Для этой модели характерна прямо пропорциональная зависимость между возникающим напряжением у и скоростью деформации

где з - коэффициент динамической вязкости.

в) Реологическая модель Максвелла представляет собой последовательно соединенные упругий и вязкий элементы.

Работа отдельных элементов зависит от скорости нагрузки общего элемента.

Для упругой деформации выполняется закон Гука:

Скорость упругой деформации будет:

Для вязкой деформации:

тогда скорость вязкой деформации будет:

Общая скорость вязко-упругой деформации равна сумме скоростей упругой и вязкой деформаций.

Это есть дифференциальное уравнение модели Максвелла.

Вывод уравнения ползучести биоткани. Если к модели приложить силу, то пружина мгновенно удлиняется, а поршень движется с постоянной скоростью. Таким образом, на данный модели реализуется явление ползучести. Если F=const, то возникающее напряжение у=const, т.е. тогда из уравнения (3) получим.

Плавление Износ

Деформации разделяют на обратимые (упругие) и необратимые (пластические, ползучести). Упругие деформации исчезают после окончания действия приложенных сил, а необратимые - остаются. В основе упругих деформаций лежат обратимые смещения атомов металлов от положения равновесия(другими словами, атомы не выходят за пределы межатомных связей); в основе необратимых - необратимые перемещения атомов на значительные расстояния от исходных положений равновесия (то есть выход за рамки межатомных связей, после снятия нагрузки переориентация в новое равновесное положение).

Пластические деформации - это необратимые деформации, вызванные изменением напряжений. Деформации ползучести - это необратимые деформации, происходящие с течением времени. Способность веществ пластически деформироваться называется пластичностью. При пластической деформации металла одновременно с изменением формы меняется ряд свойств - в частности, при холодном деформировании повышается прочность .

Виды деформации

Наиболее простые виды деформации тела в целом:

В большинстве практических случаев наблюдаемая деформация представляет собой совмещение нескольких одновременных простых деформаций. В конечном счёте, однако, любую деформацию можно свести к двум наиболее простым: растяжению (или сжатию) и сдвигу .

Изучение деформации

Природа пластической деформации может быть различной в зависимости от температуры , продолжительности действия нагрузки или скорости деформации. При неизменной нагрузке, приложенной к телу, деформация изменяется со временем; это явление называется ползучестью . С возрастанием температуры скорость ползучести увеличивается. Частными случаями ползучести являются релаксация и упругое последействие. Одной из теорий, объясняющих механизм пластической деформации , является теория дислокаций в кристаллах .

Сплошность

В теории упругости и пластичности тела рассматриваются как «сплошные». Сплошность (то есть способность заполнять весь объём, занимаемый материалом тела, без всяких пустот) является одним из основных свойств, приписываемых реальным телам. Понятие сплошности относится также к элементарным объёмам, на которые можно мысленно разбить тело. Изменение расстояния между центрами каждых двух смежных бесконечно малых объёмов у тела, не испытывающего разрывов, должно быть малым по сравнению с исходной величиной этого расстояния.

Простейшая элементарная деформация

Простейшей элементарной деформацией является относительное удлинение некоторого элемента:

На практике чаще встречаются малые деформации - такие, что .

Измерение деформации

Измерение деформации производится либо в процессе испытания материалов с целью определения их механических свойств, либо при исследовании сооружения в натуре или на моделях для суждения о величинах напряжений. Упругие деформации весьма малы, и их измерение требует высокой точности. Наиболее распространённый метод исследования деформации - с помощью тензометров. Кроме того, широко применяются тензодатчики сопротивления, поляризационно-оптический метод исследования напряжения, рентгеноструктурный анализ . Для суждения о местных пластических деформациях применяют накатку на поверхности изделия сетки, покрытие поверхности легко растрескивающимся лаком или хрупкими прокладками и т. д.

Примечания

Литература

  • Работнов Ю. Н., Сопротивление материалов, М., 1950;
  • Кузнецов В. Д., Физика твердого тела, т. 2-4, 2 изд., Томск, 1941-47;
  • Седов Л. И., Введение в механику сплошной среды, М., 1962.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Деформация" в других словарях:

    деформация - деформация: Искажение формы куска мыла по сравнению с предусмотренной в техническом документе. Источник: ГОСТ 28546 2002: Мыло туалетное твердое. Общие технические условия оригинал документа Де … Словарь-справочник терминов нормативно-технической документации

    - (фр.) Уродливость; изменение формы. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ДЕФОРМАЦИЯ [лат. deformatio искажение] изменение формы и размеров тела под действием внешних сил. Словарь иностранных слов. Комлев … Словарь иностранных слов русского языка

    Современная энциклопедия

    Деформация - – изменение формы и/или размеров тела под влиянием внешних сил и разного рода воздействий (изменение температуры и влажности, осадка опор и т. д.); в сопротивлении материалов и теории упругости – количественная мера изменения размеров … Энциклопедия терминов, определений и пояснений строительных материалов

    Деформация - (от латинского deformation искажение), изменение взаимного расположения частиц вещества, обусловленное какими либо внешними или внутренними причинами. Наиболее простые виды деформации твердого тела: растяжение, сжатие, сдвиг, изгиб, кручение.… … Иллюстрированный энциклопедический словарь

    - (от лат. deformatio искажение) 1) изменение взаимного расположения точек твердого тела, при котором меняется расстояние между ними, в результате внешних воздействий. Деформация называется упругой, если она исчезает после удаления воздействия, и… … Большой Энциклопедический словарь

    См … Словарь синонимов

    - (от лат. deformatio искажение), изменение конфигурации к. л. объекта, возникающее в результате внеш. воздействий или внутр. сил. Д. могут испытывать тв. тела (крист., аморфные, органич. происхождения), жидкости, газы, поля физические, живые… … Физическая энциклопедия

    деформация - и, ж. déformation f. <лат. deformatio искажение. 1. Изменение размеров, формы твердого тела под воздействие внешних сил (обычно без изменения его массы). БАС 1. || В изобразительных искусствах отступление от воспринимаемой глазом натуральной… … Исторический словарь галлицизмов русского языка

    деформация - деформация, деформированный. Произносится [деформация], [деформированный] и устаревающее [дэформация], [дэформированный] … Словарь трудностей произношения и ударения в современном русском языке

    Горных пород (от лат. deformatio изменение формы, искажение * a. rock deformafion; н. Deformation von Gesteinen; ф. deformation des roches; и. deformacion de las rocas) изменение относительного положения частиц пород, вызывающее изменение … Геологическая энциклопедия

Книги

  • Пластическая деформация металлов , Р. Хоникомб , Для инженерно-технических и научных работников заводов и научно-исследовательских институтов, преподавателей ВУЗов, аспирантов и студентов старших курсов. Воспроизведено в оригинальной… Категория:


Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения