Подпишись и читай
самые интересные
статьи первым!

Мейоз у растений происходит в процессе. Мейоз сопровождает образование гамет у животных и образование спор у растений

6. Гаметогенез у животных

Гаметогенез - это процесс образования половых клеток. Многоклеточные животные имеют диплоидный набор хромосом (2n). В процессе гаметогенеза, в основе которого лежит мейоз, образующиеся гаметы имеют гаплоидный набор хромосом (n).

Половые клетки развиваются в половых железах или специализированных клетках - в семенниках у самцов и в яичниках у самок. Эти клетки закладываются еще на ранних стадиях эмбрионального развития.

Гаметогенез протекает последовательно, в три стадии и заканчивается созреванием гамет (рис. 13).

Рис. 13. Гаметогенез у животных. А - сперматогенез - образование мужских половых клеток: 1 - сперматогонии; 2 - сперматоцит 1-го порядка; 3 - сперматоциты 2-го порядка; 4 - сперматиды; 5 - сперматозоиды; Б - овогенез - образование женских половых клеток: 1 - овогонии; 2 - овоцит 1-го порядка; 3 - овоцит 2-го порядка, 4 - полярные тельца; 5 - яйцеклетка

Стадия размножения. Исходные первичные половые клетки с диплоидным набором хромосом формируются в половых органах. В этот период клетки делятся - происходит митоз, что приводит к увеличению их количества. Клетки имеют диплоидный набор хромосом.

Стадия роста. Образовавшиеся клетки растут, активно синтезируют и запасают питательные вещества. Этот период соответствует интерфазе перед мейотическим делением.

Стадия созревания. На этой стадии происходит мейоз, в результате которого окончательно формируются и созревают гаметы с гаплоидным набором хромосом.

Образование мужских половых клеток

Сперматогенез - это процесс образования мужских половых клеток - сперматозоидов (рис. 13, А).

В период размножения из клеток сперматогенной ткани в результате митоза образуются многочисленные клетки - сперматогонии с диплоидным набором хромосом. Закладка первичных клеток сперматогониев происходит еще в эмбриональном развитии, т. е. до рождения организма, а интенсивное деление - только после достижения половой зрелости.

В период роста сперматогонии незначительно увеличиваются в размерах, и из каждой клетки развивается сперматоцит 1-го порядка, готовый к делению.

На стадии созревания в результате первого деления мейоза образуются две клетки - сперматоциты 2-го порядка , а после второго деления развиваются четыре одинаковые по величине клетки - сперматиды с гаплоидным набором хромосом. Все четыре клетки претерпевают сложную клеточную дифференцировку и превращаются в четыре сперматозоида.

Таким образом, из каждой первичной мужской половой клетки образуются четыре гаметы. Гормон, обеспечивающий сперматогенез у млекопитающих, называется тестостероном.

Образование женских половых клеток

Овогенез - это процесс образования женских половых клеток - яйцеклеток (рис. 13, Б).

В овогенной ткани яичников на стадии размножения первичные половые клетки - овогонии с диплоидным набором хромосом несколько раз делятся митозом. За счет этого происходит рост овогенной ткани. Далее каждая овогония превращается в овоцит 1-го порядка, который на следующей стадии начинает усиленно расти, накапливая питательные вещества в виде зерен желтка.

Процесс роста овоцита происходит значительно дольше, чем сперматоцита.

После роста происходит созревание овоцита 1-го порядка. Клетка приступает к мейозу, но процесс деления затягивается надолго. Например, у млекопитающих деление начинается в эмбриональном состоянии, но приостанавливается на профазе I до периода полового созревания самки, т. е. на несколько недель, месяцев или лет, в зависимости от вида организма. Позже под влиянием половых гормонов мейоз продолжается дальше.

Первое деление мейоза происходит асимметрично: образуются одна крупная клетка - овоцит 2-го порядка, куда переходят все питательные вещества и органоиды, и одна мелкая клетка - первичное полярное, или направительное, тельце , - в которой имеется только ядро.

Второе деление мейоза также асимметрично. Из овоцита 2-го порядка образуется одна крупная клетка - яйцеклетка, в которой находятся все питательные вещества, и одно вторичное полярное (направительное) тельце. Из первичного полярного тельца образуются два мелких вторичных полярных тельца. У большинства позвоночных животных второе деление мейоза приостанавливается на стадии метафазы мейоза II, а образование яйцеклетки завершается лишь после оплодотворения.

Таким образом, при овогенезе из каждой первичной женской половой клетки - овогония образуется одна крупная яйцеклетка с гаплоидным набором хромосом и три полярных тельца, которые редуцируются. Они служат только для равномерного деления ядра и распределения хромосом в мейозе. Овогенез у млекопитающих происходит под контролем гормона прогестерона.

Процесс образования мужских и женских клеток имеет ряд отличий.

1. Количество овогониев, вступивших в созревание, закладывается на этапе эмбрионального развития, а сперматогонии начинают активно делиться при наступлении половой зрелости, и этот процесс идет непрерывно.

2. В процессе сперматогенеза образуются 4 гаметы, а в процессе овогенеза - только одна.

3. Окончательно овогенез завершается после оплодотворения.

Строение половых клеток

У большинства видов организмов женские и мужские гаметы очень отличаются друг от друга.

Сперматозоиды - это небольшие подвижные клетки, состоящие из головки, шейки и хвостика (рис. 14, А). В головке находится ядро с гаплоидным набором хромосом. На заостренном кольце располагается специализированный пузырек - акросома, который является производным аппарата Гольджи. Она заполнена специальными ферментами, разрушающими оболочку яйцеклетки. Когда головка сперматозоида соприкасается с яйцеклеткой, содержимое акросомы освобождается и растворяет ее оболочку.

Рис. 14. Строение половых клеток животных: А - сперматозоида: 1 - акросома; 2 - ядро; 3 - митохондрии; 4 - центриоли; 5 - хвост; Б - яйцеклетки: 1 - ядро; 2 - желточные зерна

В шейке располагаются центриоли и многочисленные митохондрии, обеспечивающие энергией сперматозоид при его движении. Хвостик служит для движения сперматозоида и по строению сходен со жгутиком у одноклеточных. Кроме того, в клетке находится минимальное количество органелл: ядро, митохондрии и ферментный пузырек - акросома. Все образующиеся сперматозоиды имеют одинаковую величину.

Яйцеклетка животных - округлая крупная неподвижная клетка, содержащая ядро, все органоиды и много питательных веществ в виде желтка (рис. 14, Б). У любого вида животных она всегда значительно крупнее сперматозоидов. Питательные вещества яйцеклетки обеспечивают развитие зародыша на начальной стадии (у млекопитающих, рыб, амфибий) или на всем протяжении эмбриогенеза (у птиц, рептилий).

Размеры яйцеклеток различны у разных групп организмов. Эти данные представлены в таблице.

В отличие от яйцеклеток сперматозоиды значительно меньше. У млекопитающих их размеры варьируют от 0,001 до 0,008 мм (длина головки).

Вопросы для самоконтроля

1. Назовите клетки, последовательно образующиеся в каждой зоне гаметогенеза.

2. Определите число хромосом (n) и ДНК (c) в каждой из клеток, образованных на разных стадиях развития.

3. В каком случае при гаметогенезе клетка делится несимметрично? В чем биологический смысл такого деления?

4. Какую роль выполняют полярные тельца?

5. Сравните строение яйцеклетки и сперматозоида. Объясните, почему они так различны по строению и величине.

Из книги Кольцо царя Соломона автора Лоренц Конрад З.

ЯЗЫК ЖИВОТНЫХ Он познал всех птиц наречья. Имена их и секреты. Вёл при встречах разговоры… Г. Лонгфелло Животные не обладают языком в истинном смысле этого слова. У высших позвоночных, а также и у насекомых - главным образом у общественных видов этих обеих больших

Из книги Путешествие в прошлое автора Голосницкий Лев Петрович

Мир беспозвоночных животных В протерозойских пластах осадочных пород мы уже находим остатки живших тогда организмов: отпечатки морских водорослей, морских червей, иглы губок, остатки брахиаподов, обладавших двустворчатой раковиной.Все животные, обитавшие в архейской

Из книги Жизнь животных Том I Млекопитающие автора Брэм Альфред Эдмунд

3. Развитие животных Каждое рождающееся существо начинает свою жизнь из одной яйцевой клеточки и затем проходит длинный ряд изменений, прежде чем сделается по внешнему виду и по внутреннему строению совершенно сходным со взрослыми животными. Весь этот ряд постепенных

Из книги Гомеопатическое лечение кошек и собак автора Гамильтон Дон

Гельминтозы у животных Принято считать, что животные и гельминты - понятия неразделимые, практически синонимичные; на бытовом уровне эта тема обросла огромным количеством мифов и страхов. У кошек и собак встречаются четыре основных класса гельминтов: круглые гельминты,

Из книги Жизнь животных, Том III, Пресмыкающиеся. Земноводные. Рыбы автора Брэм Альфред Эдмунд

ЖИЗНЬ ЖИВОТНЫХ В трех томахТом III

Из книги Занимательная зоология. Очерки и рассказы о животных автора Цингер Яков Александрович

О численности животных Представители некоторых видов встречаются в природе крайне редко, другие, наоборот, весьма многочисленны. Из хищников очень немногочисленны львы, тигры, леопарды; но количество волков, наоборот, несмотря на все предпринимаемые меры их истребления,

Из книги Обитатели водоемов автора Ласуков Роман Юрьевич

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

Дрессировка животных Человек использует неконтролируемый стресс и для управления поведением животных. Так, например, старинное русское занятие – соколиная охота – требовало большого количества обученных птиц. Поэтому пойманного сокола перед началом тренинга не

Из книги Проблемы этологии автора Акимушкин Игорь Иванович

Ранги у животных Японские биологи изучали жизнь макак, которые местами еще уцелели на их островах. Методы у них были те же, что и у других этологов: по разным приметам запомнить «в лицо» всех обезьян, пронумеровать их и следить за поведением каждой. Исследователи расписали

Из книги Мир животных. Том 1 [Рассказы об утконосе, ехидне, кенгуру, ежах, волках, лисах, медведях, леопардах, носорогах, гиппопотамах, газелях и многих других автора Акимушкин Игорь Иванович

Отряды животных

Из книги Почему мы любим [Природа и химия романтической любви] автора Фишер Хелен

Избирательность у животных Избыток энергии, сосредоточенность на одном-единственном существе, стремление добиваться его внимания, потеря аппетита, настойчивость, всевозможные нежные шлепки, поцелуи, облизывания, попытки прижаться друг к другу, игривое кокетство - все

Из книги Гены и развитие организма автора Нейфах Александр Александрович

1. Гибриды животных Изучение гибридов в биологии развития обычно состоит в обнаружении проявления отцовских признаков на различных стадиях развития. При выборе скрещиваемых пар исследователь сталкивается с противоречием: чем ближе скрещиваемые особи, тем лучше

Из книги Размножение организмов автора Петросова Рената Арменаковна

3. Химеры животных Техника получения химерных, или, как их еще называют, аллофенных, зародышей сейчас лучше всего освоена на млекопитающих. Этому способствует отсутствие у них ооплазматической сегрегации и, следовательно, полное равенство всех клеток на ранних стадиях.

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

7. Оплодотворение у животных Оплодотворение - процесс слияния мужских и женских половых клеток, в результате которого образуется зигота. Зигота - оплодотворенная яйцеклетка. Она всегда имеет диплоидный набор хромосом. Из зиготы развивается зародыш, который дает начало

Из книги автора

10. Гаметогенез и развитие растений Мейоз в жизненном цикле растений. У растений гаметогенез и размножение протекают иначе, чем у животных. Процесс мейоза происходит у них не на стадии образования гамет, а на стадии образования спор. Кроме того, у растений наблюдается

Из книги автора

4.3. Гаметогенез и эмбриогенез у животных Разнообразие органического мира дает самое широкое многообразие онтогенезов. Хотя в учебниках процессы развития обычно демонстрируются на примере млекопитающих, к которым относится человек, не следует забывать, что для

Профаза I

Это самая продолжительная фаза мейоза (до 90% и более всего времени мейоза). Ее подразделяют на пять этапов:

A) Лептотена. Частичная спирализация хроматина.

Хромосомы переходят в частично конденсированную форму, становятся видны как длинные, тонкие дискретные структуры с осевой белковой нитью. Каждая хромосома обоими концами прикреплена к ядерной мембране с помощью специализированной структуры белковой природы, называемой прикрепительным диском. Хотя каждая хромосома уже реплицирована и состоит из двух сестринских хроматид, они очень тесно сближены и не различимы вплоть до поздней профазы.

Б) Зиготена. Конъюгация гомологичных хромосом, формирование бивалентов.

Процесс спаривания («слипания») гомологичных хромосом называется конъюгацией или синапсисом , а каждая пара объединившихся хромосом – бивалентом, а иногда – тетрадой – из-за четырех хроматид, входящих в состав бивалента. Конъюгация часто начинается с того, что гомологичные концы двух хромосом сближаются на ядерной мембране, а затем процесс соединения гомологов распространяется вдоль хромосом от обоих концов, но возможно начало конъюгации и на внутренних участках, с тем же конечным результатом. Обе хромосомы бивалента имеют одинаковую длину, их центромеры занима­ют одинаковое положение, и они обычно состоят из одинакового числа аллей генов, расположенных в од­ном и том же порядке. Таким образом, аллели каждого конкретного гена пары гомологичных хромосом контактируют друг с другом.

В) Пахитена. Кроссинговер.

Как только конъюгация охватывает всю длину хромосом, клетки вступают в стадию пахитены, на которой они могут оставаться несколько суток. На этой стадии реализуется кроссинговер – обмен участками между хромосомами, осуществ­ляющийся в результате разрыва и воссоединения между каждыми двумя из четырех нитей бивалента. В таких обменах участвует по одной хроматиде каждой из двух спаренных хромосом, что приводит к появлению перекрестов между двумя не сестринскими хроматидами, обмену аллелями и к появлению новых генных комбинаций в образующихся хроматидах. В пахитене перекресты еще не видны, но позднее все они проявляются в виде хиазм (от греч. chiasma – перекрест).



Кроссинговер является одним из вариантов общей (гомологичной) рекомбинации – механизма, относящегося к основным генетическим процессам. Более подробно о них у нас пойдет речь в 10 классе (тема «02 Основы молекулярной генетики»).

Г) Диплотена. Завершение конъюгации хромосом. Дополнительная частичная спирализация участков гетерохроматина.

Стадия диплотены в профазе I начинается с «разлипания» конъюгировавших хромосом, что позволяет двум гомологичным хромосомам бивалента несколько отодвинуться друг от друга. Однако они все еще связаны одной или несколькими хиазмами, т. е. местами, где произошел кроссинговер.

В ооцитах (развивающихся яйцеклетках) диплотена может растянуться на месяцы или годы, так как именно на этой стадии в хромосомы конденсируется гетерохроматин, но остаются недоспирализованные участки эухроматина, с которых продолжается синтез РНК, обеспечивая яйцеклетку резервными веществами. В особых случаях диплотенные хромосомы становятся исключительно активными в отношении синтеза РНК: такие хромосомы типа ламповых щеток находят у амфибий и некоторых других организмов.

Д) Диакинез. Подготовка к метафазе I.

Диплотена незаметно переходит в диакинез – стадию, предшествующую метафазе. Прекращается синтез РНК и хромосомы конденсируются, утолщаются и отделяются от ядерной мембраны. Теперь ясно видно, что каждый бивалент содержит четыре отдельные хроматиды, причем каждая пара сестринских хроматид соединена центромерой, тогда как несестринские хроматиды, претерпевшие кроссинговер, связаны хиазмами.

Естественно, при полной конденсации хроматина исчезают ядрышки.

Центриоли (если они имеются) удваиваются и мигрируют к полюсам.

Ядерная оболочка разрушается.

Образуется веретено деления.

После окончания длительной профазы I два ядерных деления без разделяющего их периода синтеза ДНК доводят процесс мейоза до конца. Эти стадии обычно занимают суммарно не более 10% всего времени, необходимого для мейоза, и носят те же названия, что и соответствующие стадии митоза.

Метафаза I

1. Кинетохорные нити веретена деления закрепляются с двух сторон на кинетохорах бивалентов – на центромере каждой хромосомы со своей стороны (в митозе не было бивалентов, и нити закреплялись на каждой хромосоме с двух сторон).

2. «Танец бивалентов» (а не хромосом, как в митозе).

3. Биваленты (а не хромосомы) выстраиваются у экватора веретена.

Анафаза I

Нити веретена тянут гомологичные хромосомы, состоящие по-прежнему из двух хроматид, к противоположным полюсам веретена. Таким образом, к разным полюсам клетки расходятся гомологичные хромосомы (по одной хромосоме из каждой пары), а не хроматиды, как в митозе. В результате хромосомы разделяются на два гаплоидных набора – по одному на каждом полю­се веретена, не смотря на то, что масса каждой группы хромосом соответствует диплоидному набору (хроматиды – копии друг друга и содержат абсолютно идентичную информацию, если кроссинговера не было, или различаются лишь несколькими аллелями, если кроссинговер произошел).

Телофаза I

Расхождение гомологичных хромосом к противопо­ложным полюсам соответствует окончанию мейоза I. Число хромосом уменьшилось вдвое, но они все еще состоят из двух хроматид каждая. Веретено деления обычно исчезает.

У животных и у некоторых растений хроматиды обыч­но частично деспирализуются, на каждом полюсе вновь образу­ется ядерная оболочка. Затем происходит цитокинез – образованием перетяжки (у животных) или фор­мирование клеточной стенки (у растений), и клетки вступают в интерфазу как при ми­тозе.

У многих растений не наблюдается ни телофазы, ни полноценного цитокинеза, ни интерфазы, и клетка из анафазы I прямо переходит в профазу второ­го мейотического деления.

Интерфаза II

Эта стадия обычно имеется только у животных клеток, и ее продолжительность может быть различной. Репли­кация ДНК в интерфазе II никогда не происходит.

Мейоз II

Второе деление мейоза по механизму является типичным митозом. Оно происходит быстро:

Профаза II у всех организмов короткая.

Если телофаза I и интерфаза II имели место, то ядрышки и ядерные мембраны разруша­ются, а хроматиды укорачиваются и утолщаются. Центриоли, если они имеются, перемещаются к про­тивоположным полюсам клетки. Во всех случаях, к концу профазы II появляются новые нити веретена деления. Они расположены под прямыми углами к веретену мейоза I.

Метафаза II. Как и в митозе, хромосомы выстраиваются по отдельности на эк­ваторе веретена.

Анафаза II. Аналогична митотической: центромеры делятся (разрушение когезинов) и нити веретена деления растаскивают хроматиды к противоположным полю­сам.

Телофаза II. Происходит так же, как телофаза митоза с той лишь разницей, что образуются четыре гаплоидные дочер­ние клетки. Хромосомы раскручиваются, удлиняются и становятся плохо различимыми. Нити веретена ис­чезают. Вокруг каждого ядра вновь образуется ядерная оболо6нчка, но ядро со­держит теперь половину числа хромосом исходной родительской клетки. При последую­щем цитокинезе из единственной роди­тельской клетки получается четыре дочерних клетки.

Предварительные итоги:

При мейозе в результате двух последовательных клеточных делений, следующих за одним циклом репликации ДНК, из одной диплоидной клетки образуются четыре гаплоидные.

В мейозе доминирует профаза I, которая может занимать 90% всего времени. В этот период каждая хромосома состоит из двух тесно сближенных сестринских хроматид.

Кроссинговер (перекрест) между хромосомами осуществляется на стадии пахитены в профазе I, при плотной конъюгации каждой пары гомологичных хромосом, что приводит к образованию хиазм, сохраняющих единство бивалентов вплоть до анафазы I.

В результате первого деления мейоза в каждую дочернюю клетку попадает по одной хромосоме из каждой пары гомологов, состоящих в это время из соединенных сестринских хроматид.

Затем без репликации ДНК быстро протекает второе деление, при котором каждая сестринская хроматида попадает в отдельную гаплоидную клетку.

Сопоставление митоза и мейоза I (мейоз II практически идентичен митозу)

Стадия Митоз Мейоз I
Профаза Гомологичные хромосомы обособ­лены. Хиазмы не образуются. Кроссинговер не происходит Гомологичные хромосомы конъюгируют. Хиазмы образуются. Кроссинговер имеет место
Метафаза Хромосомы, из двух хроматид каждая, располагаются на экваторе веретена деления Биваленты, образованные парами гомологичных хромосом, располагаются на эква­торе веретена деления
Анафаза Центромеры делятся. Расходятся хроматиды. Расходящиеся хроматиды идентич­ны Центромеры не делятся. Расходятся целые хромосомы (из двух хроматид каждая) Расходящиеся хромосомы и их хроматиды могут быть неидентичными в результате кроссинговера
Телофаза Плоидность дочерних клеток равна плоидности родительских клеток. У диплоидов дочерние клетки содержат обе гомо­логичные хромосомы Плоидность дочерних клеток вдвое меньше плоидности родительских клеток. Дочерние клетки содержат только по одной из каждой пары гомологичных хромосом
Где и когда происходит В гаплоидных, диплоидных и поли­плоидных клетках При образовании соматических кле­ток При образовании спор у некоторых грибов и низших растений. При образовании гамет у высших растений Только в диплоидных и полиплоидных клетках На каком-либо этапе жизненного цикла организмов с половым размножением, например – при гаметогенезе у большинства животных и при спорогенезе у высших растений.

Значение мейоза:

1. Половое размножение. Мейоз происходит у всех организмов, размножающихся по­ловым путем. Во время оплодотворения ядра двух гамет сливаются. Каждая гамета содержит гаплоидный (n) набор хромосом. В результате слияния гамет образуется зигота, содержащая диплоидный (2n) набор хромосом. В отсутст­вие мейоза слияние гамет приводило бы к удвоению числа хромосом у каждого по­следующего поколения, возникающего в результате полового размножения. У всех организмов с половым размножением это­го не происходит благодаря существова­нию особого клеточного деления, при котором диплоидное число хромосом (2n) сокращается до гаплоидного (n).

2. Генетическая изменчивость. Мейоз создает также возможность для возникновения в гаметах новых комбинаций генов, что ве­дет к генетическим изменениям в потом­стве, получаемым в результате слияния га­мет. В процессе мейоза это достигается двумя способами, а именно – независи­мым распределением хромосом при первом мейотическом де­лении и кроссинговером.


А) Независимое распределение хромосом.

Независимое распределение означает, что в анафазе I хромосомы, составляющие данный бивалент, распределяются независимо от хро­мосом других бивалентов. Этот процесс лучше всего объяснить на схеме, приведенной справа (черные и белые полоски соответствуют мате­ринским и отцовским хромосомам).

В метафазе I биваленты располагаются на экваторе веретена случайным образом. На схеме представлена про­стая ситуация, в которой участвуют только два бивалента, а поэтому возможно распо­ложение только двумя способами (при од­ном из них белые хромосомы ориентированы в одну сторону, а при другом – в разные стороны). Чем больше число бивалентов, тем больше число возможных комбинаций, а, следовательно, тем выше изменчивость. Число вариантов образующихся гаплоидных клеток – 2 x . Неза­висимое распределение лежит в основе одного из законов классической генетики – второго закона Менделя.

Б) Кроссинговер.

В результате образования хи­азм между хроматидами гомологичных хромосом в профазе I происходит кроссинговер, веду­щий к образованию новых комбинаций ге­нов в хромосомах гамет.

Это показано на схеме кроссинговера

Итак, коротко о главном:

Митоз – это такое деление клеточного ядра, при котором образуются два дочерних ядра, содер­жащие наборы хромосом, идентичные наборам родительской клетки. Обычно сразу же после деления ядра происходит деление всей клетки с образованием двух дочерних клеток. Митоз с последующим делением клетки приводит к уве­личению числа клеток, обеспечивая процессы роста, регенерации и замещения клеток у эукариот. У одноклеточных эукариот митоз служит механизмом бесполого размножения, приводя­щего к увеличению численности популяции.

Мейоз представляет собой процесс деления клеточного ядра с образованием дочерних ядер, каждое из которых содержит вдвое меньше хро­мосом, чем исходное ядро. Мейоз называют так­же редукционным делением, так как при этом число хромосом в клетке уменьшается от дипло­идного (2n) до гаплоидного (n). Значение мейоза состоит в том, что у видов с половым размноже­нием он обеспечивает сохранение постоянного числа хромосом в ряду поколений. Мейоз про­исходит при образовании гамет у животных и спор у растений. В результате слияния гаплоид­ных гамет при оплодотворении восстанавливает­ся диплоидное число хромосом.


Прочие варианты клеточных делений.

Деление клеток прокариот.

Рассматривая механизмы митоза и мейоза как основные механизмы клеточных делений, не следует забывать, что они возможны лишь у представителей империи Эукариот, иначе громадная империя Прокариот останется вне сферы нашего внимания.

Отсутствие оформленного ядра и тубулярных органоидов (а значит – и веретена деления) делают очевидным тот факт, что механизмы прокариотического деления должны принципиально отличаться от эукариотических.

В клетках прокариот кольцевая молекула ДНК прикреплена к плазмалемме в области одной из мезосом (складок плазматической мембраны). Она прикреплена участ­ком, в котором начинается дву­направленная репликация (он называется ориджином репликации ДНК ). Сразу после начала репликации начинается активный рост плазмалеммы, причем встраивание но­вого мембранного материала идет в ограниченном пространст­ве плазматической мембраны – между точками прикрепления двух частично реплицированных молекул ДНК.

По мере роста мембраны, реплицированные молекулы ДНК постепенно отдаляются друг от друга, мезосома углубляется, а, напротив нее, закладывается еще одна мезосома. Ког­да реплицированные молекулы ДНК окончательно отдаляются друг от друга, мезосомы соединяются, и происходит разде­ление материнской клетки на две дочерние.

Полового размножения у прокариотов нет, поэтому отсутствуют варианты деления с сокращением плоидности, и все разнообразие способов деления сводится к особенностям цитокинеза:

При равновеликом делении цитокинез равномерный, и образующиеся дочерние клетки имеют сходные размеры; это наиболее распространенный способ цитокинеза у прокариотов;

При почковании одна из клеток наследует бо льшую часть цитоплазмы материнской клетки, а вторая выглядит маленькой почкой на поверхности большой (пока не отделится). Такой цитокинез дал название целому семейству прокариотов – Почкующиеся бактерии , хотя к почкованию способны не только они.

Особые варианты деления эукариотических клеток.

Эндомитоз

У многих Простейших (пример – Амеба обыкновенная) и большинства Грибов (пример – дрожжи) деление клеток с четким распределением генетического материала и сохранением плоидности (признаки митоза) не сопровождается разрушением ядерной оболочки. Ядро, сохраняя целостность весь период деления, делится перетяжкой в момент цитокинеза (отличие от митоза). Варианты эндомитоза разнообразны по механизмам, разводящим хроматиды к полюсам делящейся клетки (помимо веретена деления, в этом может принимать участие внутренняя мембрана оболочки ядра), и позволяют проследить эволюцию процессов деления, но об этом речь пойдет позже. Сейчас для нас принципиально не путать строго регулируемый эндомитоз с аномальным амитозом , который, при всем внешнем сходстве, является принципиально иным и, чаще всего, – патологическим процессом.

Амитоз

Амитоз представляет собой, так называемое, прямое деление клетки: клетка делится вместе с ядром перетяжкой, без всякого четкого распределения наследственного материала. Это приводит к появлению дочерних клеток с неопределенной плоидностью и нарушенной структурой генетической информации. Такие клетки не способны к дальнейшему делению, а, чаще всего – вообще нежизнеспособны. Таким способом в нашем организме образуются короткоживущие тромбоциты – амитозом мегакариоцитов. Но, в большинстве случаев, так делятся клетки ступившие на путь апоптоза (генетически запрограммированной клеточной гибели).

Остальную информацию вы получите, проанализировав сводную таблицу клеточных делений (цветом выделены основные типы):

Варианты клеточных делений (сводная таблица)
Организмы Прокариоты Эукариоты
Тип деления Равновеликое или почкование Митоз Эндомитоз Амитоз Мейоз
Итог по плоидности: (пл. мат. к.)/ /число д. к. х (пл. д. к.) Сохраняется: (n) / / 2 х (n) Сохраняется: (m n) / / 2 х (m n) Сохраняется: (m n) / / 2 х (m n) Нарушается. Дочерние клетки имеют неопределённую плоидность: m n / / (а n) + (в n) Сокращается вдвое: m n / / 4 х (m/2 n)
Предшествование репликации ДНК делению Да Да Да Да, но может идти с нарушениями. Да, но далее следуют два деления
Расхождение хромосом Упорядоченное Упорядоченное Упорядоченное Случайное Упорядоченное
Структуры, разводящие хромосомы к полюсам Плазмалемма Веретено деления Веретено деления и оболочка ядра Нет подобных структур Веретено деления
Судьба оболочки ядра в момент деления клетки Неприменимо, поскольку исходно отсутствует Разрушается Сохраняется весь период и делится перетяжкой Разрушается
Соотношение временных рамок кариокинеза и цитокинеза Неприменимо, поскольку исходно отсутствует ядро Кариокинез и цитокинез одновременны Кариокинез предшествует цитокинезу
Жизнеспособность дочерних клеток жизнеспособны жизнеспособны жизнеспособны Обычно – нежизнеспособны, либо живут крайне недолго. В любом случае неспособны к делению жизнеспособны

Мейоз. Это такое деление эукореотных клеток, при котором дочерние клетки получают в 2-а раза меньше информации, чем было в материнской клетке, поэтому мейоз всегда включает в себя редукционное деление, приводящее к уменьшению кол-ва генетической информации. Мейоз у животных проходит перед образованием гамет, поэтому это организмы с генетической редакцией. Мейоз у растений проходит перед образованием спор, так как для всех растений характерной чертой является чередование поколений. Бесполое поколение участвует в образовании спор и всегда имеет двойной или диплоидный набор хромосом. Так как споры образуются в ходе мейоза, то для них характерен одинарный или гаплоидный набор хромосом. Из споры прорастает половое поколение, на котором за счёт митоза формируются яйцеклетки и сперматозоиды. Они сливаются, образуют зиготу, из которой прорастает бесполое поколение.Для некоторых простейших нормой жизни является гаплоидность, поэтому мейоз проходит после образования зиготы (зиготическая редукция).Таким образом мейоз необходим для образования спор и гамет, а также для сохранения генетической стабильности вида. Типичный мейоз включает в себя 2-а деления: эквационное (2), редукционное (1)

Перед редукционным делением проходит нормальная интерфаза. Между 1 и 2 делением интерфаза сильно сокращена, либо вообще отсутствует. В любом случае удвоение ДНК между этими делениями не происходит. Оба деления включают в себя все фазы. Профаза 1 Делится на несколько периодов: 1.Липтотена – в ходе этого периода ядерная оболочка сохраняется, хромосомы становятся более компактными. 2.Зиготена – начинается сближение гомологичных хромосом. Гомологичными называются хромосомы, сходные по форме, размеру, генетическому содержимому. Гомологичные хромосомы подходят друг к другу и начинается формирование пар или бивалентов. 3.Пахитена – гомологичные хромосомы объединяются в биваленты, таким образом, что находящиеся рядом сестринские хроматиды взаимодействуют друг с другом. Точка взаимодействия называется хиазмой.Кол-во хиазм может быть различным, но существуют правила. Образовавшиеся хиазмы тормозят формирование новых хиазм.(рис 1)

В хиазмах может происходить разрыв в нитях ДНК. Обмен участками между гомологичными хромосомами, а затем сшивание сахарофосфатного остова. Этот процесс получил название кроссинговер. Такой обмен участками между гомологичными хромосомами является основой комбинативной изменчивости. Таким образом, формирование бивалентов необходимо для осуществления процесса кроссинговера и также для нормального расхождения гомологичных хромосом к разным полюсам клетки в ходе анафазы 1. 4.Диплотена и диокинез – гомологичные хромосомы на этой стадии пытаются разойтись, однако их сдерживают хиазмы, которые в данном случае смещаются к теломерным участкам хромосомы и благодаря хиазмам биваленты сохраняются. Этот процесс получил название диокинеза. Практически всю профазу, включая диплотену, ядерная оболочка сохраняется. К концу профазы фрагментируются мембранные органоиды, фрагментируется оболочка ядра, и хромосомы оказываются в цитоплазме клетки в виде бивалентов. Формируются веретено деления, причём к каждому биваленту подходит кинетохорная нить только от одного из полюсов. Благодаря полимеризации этой нити биваленты начинают продвигаться по экватору клетки. Метафаза 1 В ходе метафазы биваленты выстраиваются по экватору клетки, таким образом, что гомологичные хромосомы одной пары лежат по разные стороны от экватора. Так как ориентация бивалентов относительно полюсов клетки произвольна, то возможно несколько вариантов расположения бивалентов друг относительно друга. Анафаза 1 Начинается расхождение гомологичных хромосом к разным полюсам клетки. Так как биваленты произвольно ориентировались относительно полюсов, то возможны различные варианты их расхождения и, следовательно, произвольная ориентация бивалентов в метафазе 1. Варианты расхождения гомологичных хромосом также является основой комбинативной изменчивости. Расхождение обеспечивает основной и дополнительный механизмы.Телофаза 1Около каждой клетки формируется полный набор цитоплазматических органоидов и свой ядерный аппарат. После телофазы проходит цитокинез, и образуется 2-е клетки. Причём кол-во хромосом и генетическая информация уменьшены в 2-а раза. 2-е клетки, которые образованы в ходе редукционного деления подвергаются эквационному делению, которое по своему механизму является типичным митозом. Результатом эквационного деления является образование 4-х клеток.(рис 2) В ходе анафазы 1 редукционного деления к каждому полюсу клетки закономерно показывает только гомологичная хромосома из пары. Поэтому после телофазы и цитокинеза каждая дочерняя клетка содержит только 1 гомологичную хромосому из пары, то есть в ходе редукционного деления кол-во хромосом и информации в дочерних клетках уменьшается. Поскольку в метафазе 1 существовали варианты в расположении хромосом, то изучены варианты расхождения гомологичных хромосом к разным полюсам. Это является основой комбинативной изменчивости.Биологический смысл мейоза Образование гамет или спор, Сохранение генетической стабильности вида, Основа комбинативной изменчивости за счёт процесса кроссинговера, либо за счёт произвольной ориентации бивалентов относительно полюсов клетки. Кроссинговер может наблюдаться в ходе митоза, как исключение в том случае, если гомологичные хромосомы сходятся и кньюгируют. Последствия имеет кроссинговер – появление крупных пигментных пятен и явление разноглазости.

Половые клетки животных формируются в результате особого типа деления, при котором число хромосом во вновь образующихся клетках в два раза меньше, чем в исходной материнской клетке. Таким образом, из диплоидной клетки образуются гаплоидные клетки. Это необходимо для того, чтобы сохранить постоянный набор хромосом организмов при половом размножении.

Мейоз (от греч. meiosis - уменьшение) - редукционное деление, при котором хромосомный набор клетки уменьшается вдвое.

Для мейоза характерны те же стадии, что и для митоза, но процесс состоит из двух последовательных делений - I деление и II деление мейоза.

В результате образуются не две, а четыре клетки с гаплоидным набором хромосом.

Стадии мейоза

Как и митозу, мейозу предшествует интерфаза, продолжительность которой зависит от вида организма и бывает различной. Перед делением происходит синтез белка и редупликация ДНК. Клетка увеличивается в размерах за счет удвоения количества органоидов. Каждая хромосома в конце интерфазы состоит из двух молекул ДНК, которые образуют две сестринские хроматиды, сцепленные центромерой, поэтому хромосомный набор клетки сохраняется диплоидным. Таким образом, перед началом деления набор хромосом и ДНК соответственно составляет 2n4c.

Профаза I. Профаза первого деления мейоза значительно длиннее, чем в митозе, кроме того, она сложнее. Ее подразделяют на пять стадий.

Лептотена. Хромосомы спирализуются, становятся хорошо заметными. Каждая состоит из двух сестринских хроматид, но они тесно сближены и создают впечатление одной тонкой нити. Отдельные участки хромосом интенсивно окрашены за счет более сильной спирализации и называются хромомерами. Гомологичные хромосомы попарно соединяются и накладываются друг на друга - конъюгируют. В результате образуются биваленты - двойные хромосомы.

Зиготена. На этой стадии происходит тесное сближение и соединение гомологичных хромосом - конъюгация. Они накладываются друг на друга, причем однотипные участки с одинаковыми генами четко соприкасаются друг с другом. Пары соединенных (конъюгированных) гомологичных хромосом образуют биваленты (от лат. би - двойной). Каждая гомологичная хромосома состоит из двух сестринских хроматид, значит, биваленты фактически состоят из четырех хроматид и представляют собой тетрады (от лат. тетра - четыре).

Пахитена. Это достаточно длительная стадия, так как именно в этот период между конъюгированными хромосомами может происходить обмен отдельными участками - кроссинговер (рис. 9). Между несестринскими хроматидами двух гомологичных хромосом начинается обмен некоторыми генами, что приводит к рекомбинации генов в хромосомах. Биваленты продолжают укорачиваться и утолщаться.

Рис. 9. Кроссинговер. Последовательность процесса: А - репликация ДНК и удвоение хромосом; Б - конъюгация; В - кроссинговер

Диплотена. На этой стадии гомологичные хромосомы начинают отталкиваться друг от друга. Конъюгация заканчивается, однако хромосомы еще связаны друг с другом в точках, в которых происходил кроссинговер. В таком состоянии они могут находиться довольно долго.

Диакинез. Гомологичные хромосомы продолжают отталкиваться друг от друга и остаются соединенными только в некоторых точках. Они приобретают определенную форму и теперь хорошо заметны. Каждый бивалент состоит из четырех хроматид, сцепленных попарно центромерами. Ядерная мембрана постепенно исчезает, центриоли расходятся к полюсам клетки, и образуются нити веретена деления. Профаза I занимает 90 % от всего времени мейоза (рис. 10).

Рис. 10. Мейоз: А - профаза I; Б - метафаза I; В - анафаза I; Г - телофаза I; Д - профаза II; Е - метафаза II; Ж - анафаза II; 3 - телофаза II

Метафаза I. Гомологичные хромосомы попарно в виде бивалентов выстраиваются в экваториальной зоне клетки над и под плоскостью экватора. Образуется метафазная пластинка. Центромеры хромосом соединяются с нитями веретена деления.

Анафаза I. Гомологичные хромосомы расходятся к полюсам клетки. Это основное отличие мейоза от митоза. Таким образом, у каждого полюса оказывается только одна хромосома из пары, т. е. происходит уменьшение числа хромосом вдвое - редукция. Первое деление мейоза называется редукционным.

Телофаза /. Первое деление мейоза завершается цитокинезом - делится все остальное содержимое клетки. В цитоплазме образуется перетяжка и возникают две клетки с гаплоидным набором хромосом. Формируется ядерная оболочка и ядро. Хромосомы состоят из двух хроматид, но теперь они не идентичны друг другу вследствие кроссинговера. Число хромосом в каждой клетке равно соответственно n, а ДНК - 2c.

Образование двух клеток может происходить не всегда. Иногда телофаза завершается только формированием двух гаплоидных ядер.

Мейоз II. Перед вторым делением мейоза интерфаза очень короткая (у животных), но может и вообще отсутствовать (у растений). В интерфазе II репликации ДНК не происходит, число хромосом и ДНК сохраняются неизменными. Обе клетки или ядра после непродолжительного перерыва одновременно приступают ко второму делению мейоза.

Мейоз II полностью идентичен митозу и протекает в двух клетках (ядрах) синхронно. Здесь происходят два главных события: расхождение сестринских хроматид и образование гаплоидных клеток.

Профаза II. Ядерная мембрана исчезает, образуется веретено деления. Хромосомы спирализуются, укорачиваются и утолщаются. Фаза значительно короче профазы I. При отсутствии интерфазы II иногда профаза II также может практически отсутствовать.

Метафаза II. Хромосомы выстраиваются в плоскости экватора. Нити веретена деления соединены с центромерами. Веретено деления в мейозе II перпендикулярно веретену первого деления.

Анафаза II. Центромеры делятся. К полюсам клетки расходятся сестринские хроматиды, которые теперь становятся хромосомами. У каждого полюса образуется гаплоидный набор хромосом, где каждая хромосома состоит теперь из одной молекулы ДНК.

Телофаза II. Хромосомы деспирализуются, становятся плохо различимыми. Нити веретена деления исчезают. Формируется ядерная мембрана. Далее происходит цитокинез, как и в митозе. Образуются 4 гаплоидных ядра или 4 гаплоидные клетки. Число хромосом и ДНК в каждой клетке равно соответственно n и c.

Биологический смысл мейоза заключается в образовании гаплоидных клеток, которые в результате полового размножения сливаются, и вновь восстанавливается диплоидный набор. Этот процесс обеспечивает постоянный набор хромосом у вновь образующихся организмов.

Поведение хромосом в мейозе

Мейоз обеспечивает появление разнообразных по качеству генетической информации гамет. Это связано с особым поведением хромосом в мейозе (рис. 11).

Рис. 11. Поведение хромосом в мейозе: А - распределение гомологичных хромосом; Б - независимое распределение негомологичных хромосом; В - кроссинговер и нарушение сцепления генов

В мейозе гомологичные хромосомы всегда попадают в разные гаметы. Так как гомологичные хромосомы могут нести разные по качеству признаки, следовательно, гаметы не идентичны по генному набору.

Негомологичные хромосомы расходятся в гаметы произвольно, независимо друг от друга. Это связано со случайным расположением бивалентов в мейозе I и их независимым расхождением в анафазе I. Следовательно, отцовские и материнские хромосомы распределяются в гаметах случайным образом. Этот процесс называется независимым распределением, что увеличивает число типов гамет и является основой для генетического разнообразия организмов.

Число типов гамет у диплоидных организмов можно определить по формуле:

где N - число типов гамет, n - число пар хромосом организма.

Например, у дрозофилы кариотип равен 8, число пар хромосом - 4.

У человека кариотип составляет 46 хромосом, т. е. 23 пары.

N= 2 23 = 8 388 608

Конъюгация и кроссинговер способствуют рекомбинации генов, изменяется сочетание генов в хромосоме, что увеличивает разнообразие гамет и сочетание признаков в организме.

Мейоз в жизненном цикле организмов

Мейоз в жизненном цикле организма от одного полового размножения до другого происходит один раз. У многоклеточных животных и высших растений диплоидная фаза длительная и сложная. Она соответствует взрослому организму. Фаза гаплоидных клеток непродолжительна и проста. Это чаще всего половые клетки или группа клеток, в которых они образуются. Однако у некоторых организмов гаплоидная фаза соответствует взрослому состоянию, а диплоидной является лишь оплодотворенная яйцеклетка - зигота (рис. 12).

Рис. 12. Схема жизненных циклов организмов: А - жизненный цикл низших растений водорослей, грибов; мейоз происходит сразу после образования зиготы, взрослое поколение гаплоидное; Б - жизненный цикл животных; В - жизненный цикл высших растений, чередование гаплоидного и диплоидного поколения

У животных мейоз происходит при образовании гамет. Гаплоидными являются только гаметы. После оплодотворения диплоидный набор хромосом восстанавливается, поэтому зигота и взрослый организм диплоидные.

У высших растений мейоз происходит при образовании спор, из которых потом развивается гаплоидный организм - гаметофит. Он может представлять собой взрослый организм (у мхов) или только несколько клеток на основном растении - спорофите. В обоих случаях на нем в процессе митоза образуются гаметы, а после оплодотворении - диплоидная зигота. Она дает начало спорофиту.

У некоторых низших растений, одноклеточных животных, грибов мейоз происходит сразу же после образования зиготы. Взрослый организм существует только в гаплоидной форме.

Вопросы для самоконтроля

1. Какой тип деления клетки лежит в основе полового размножения?

2. Какие клетки образуются в результате мейотического деления?

3. Охарактеризуйте фазы мейоза.

4. Объясните биологический смысл мейоза.

5. Почему редукционное деление имеет место только при половом размножении?

6. В чем основное отличие мейоза от митоза? Сравните деление мейоза I, мейоза II и митоза. В чем их сходство и отличие?

7. Как распределяются гомологичные и негомологичные хромосомы в мейозе?

8. Объясните, почему при мейозе происходит образование значительного числа типов гамет.

9. Определите, сколько и какие типы гамет образуются из клетки с набором хромосом AaBbCc.

10. Как циклы развития организмов связаны с мейозом?

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Удивительная генетика автора Левитин Вадим

Мейоз и митоз Митоз – это деление клетки. Как известно, почти все клетки нашего организма время от времени делятся, но это не банальное деление пополам, а сложный многофазный процесс. Однако прежде чем говорить о митозе (и о другом варианте клеточного деления – мейозе),

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

20. Образование половых клеток. Мейоз Вспомните!Где в организме человека происходит образование половых клеток?Какой набор хромосом содержат гаметы? Почему?Для осуществления полового размножения необходимы специализированные клетки – гаметы, содержащие одинарный

Из книги Генетика человека с основами общей генетики [Учебное пособие] автора

3.5. Мейоз Современные представления о цитологических основах наследственности сформировались только после выяснения генетического смысла процесса мейотического деления клеток.Мейоз – это процесс образования гаплоидных клеток, т. е. клеток, имеющих половинный набор

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Мейоз Мейоз – это процесс образования гаплоидных клеток, т. е. клеток, имеющих половинный набор хромосом. Примером гаплоидных клеток являются гаметы (половые клетки) и споры.Гамета – это клетка, способная объединяться с себе подобной клеткой с образованием зиготы –

Мейозом называется особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в 2 раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение).

Отдельные фазы мейоза у животных описал В. Флемминг (1882), а у растений – Э.Страсбургер (1888), а затем российский ученый В.И. Беляев. В это же время (1887) А. Вайсман теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Первое подробное описание мейоза в ооцитах кролика дал Уиниуортер (1900).

Хотя мейоз открыт более 100 лет назад, но изучение мейоза продолжается до сих пор. Интерес к мейозу резко возрос в конце 60-х годов, когда выяс­нилось, что одни и те же контролируемые генами ферменты могут принимать участие во многих процессах, связанных с ДНК. В по­следнее время ряд биологов развивают оригинальную идею: мейоз у высших организмов служит гарантом стабильности генетического материала, ибо в процессе мейоза, когда пары хромосом-гомологов тесно соприкасаются, происходит проверка нитей ДНК на точность и восстановление повреждений, затрагивающих сразу обе нити. Изучение мейоза связало методы и интересы двух наук: цитологии и генетики. Это привело к рождению новой ветки знания - цитогенетики, тесно соприкасающейся ныне с молекулярной биологией и генной инженерией.

Биологическое значение мейоза заключается в следующих процессах:

1.Благодаря редукции числа хромосом в результате мейоза в ряду поколений при половом размножении обеспечива­ется постоянство числа хромосом.

2.Независимое распределение хромосом в анафазе первого деления обеспечивает рекомбинацию генов, относящих­ся к разным группам сцепления (находящихся в разных хромосомах). Мейотическое распределение хромосом по дочерним клеткам называется сегрегацией хромосом.

3.Кроссинговер в профазе I мейоза обеспечивает рекомбинацию генов, относящихся к одной группе сцепления (находящихся в одной хромосоме).

4. Случайное сочетание гамет при оплодотворении вместе с вышеперечисленными процессами способствует генети­ческой изменчивости.

5. В процессе мейоза происходит еще одно существенное явление. Это процесс активации синтеза РНК (или транскрип­ционной деятельности хромосом) в ходе профазы (диплотены), связанный с формированием хромосом типа «ламповых щеток» (обнаружены у животных и некоторых растений).

Эта ревер­сия профазы к интерфазному состоянию (при митозе только в интерфазе идет синтез и-РНК) является специфической харак­теристикой мейоза как особого типа деления клеток.

Следует отметить, что у простейших наблюдается значительное разнообразие процессов мейоза.

В соответствии с положением в жизненном цикле различают три типа мейоза:

Зиготны й (исходный) мейоз происходит в зиготе, т.е. непосредственно после оплодотворения. Он характерен для организмов, в жизненном цикле которых преобладает гаплоидная фаза (аскомицеты, бизидиомицеты, некото­рые водоросли, споровики и др.).

Гаметный (терминальный) мейоз происходит во время формирования гамет. Он наблюдается у многоклеточных животных (в т.ч. у человека), а также среди простейших и некоторых низших растений, в жизненном цикле которых преобладает диплоидная фаза.

Промежуточный (споровый) мейоз протекает во время спорообразования у высших растений, включаясь между стадиями спорофита (растения) и гаметофита (пыльца, зародышевый мешок).

Таким образом, мейоз - это форма ядерного деления, сопро­вождающаяся уменьшением числа хромосом с диплоидного до гаплоидного и изменением генетического материала. Результат мейоза - образование клеток с гаплоидным набором хромосом (половых клеток).

Продол­жительность мейоза может отличаться в зависимости от вида растений и животных (табл. 1).

Таблица 1. Продолжительность мейоза у различных видов растений

Типичный мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому первое мейотическое деление называют редукционным , реже – гетеротипным . Во втором делении число хромосом не изменяется; такое деление называют эквационным (уравнивающим), реже – гомеотипным . Выражения «мейоз» и «редукционное деление» часто используют как синонимы.

Исходное число хромосом в мейоцитах (клетках, вступающих в мейоз) называется диплоидным хромосомным числом (2n) Число хромосом в клетках, образовавшихся в результате мейоза, называется гаплоидным хромосомным числом (n). Минимальное число хромосом в клетке называется основным числом (x). Основному числу хромосом в клетке соответствует и минимальный объем генетической информации (минимальный объем ДНК), который называется геном.

Количество геномов в клетке называется геномным числом (n). У большинства многоклеточных животных, у всех голосеменных и многих покрытосеменных растений понятие гаплоидности–диплоидности и понятие геномного числа совпадают. Например, у человека n=x=23 и 2n=2x=46.

Морфология мейоза - характеристика фаз

Интерфаза

Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Таким образом, деление клетки начинается на синтетической стадии клеточного цикла. Поэтому мейоз образно называют преждевременным митозом. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с.

При наличии центриолей происходит их удвоение таким образом, что в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

Первое деление мейоза

ДНК прошла репликацию. Начитается профаза I, самая продолжительная стадия мейоза.

Стадия профазы I подразделяется на следующие стадии:

лептотена - стадия тонких нитей;

зиготена - стадия двойных нитей;

пахитена - стадия толстых нитей;

диплотена - кроссинговер;

диакинез - исчезновение ядерной оболочки и ядрышка.

В ранней профазе (лептотене) происходит подготовка к ко­нъюгации хромосом. Хромосомы уже удвоены, но сестринские хроматиды в них еще неразличимы. Хромосомы начинают упа­ковываться (спирализоваться).

В отличие от профазы митоза, где хромосомы расположены по мембране ядра конец в конец и, упа­ковываясь, притягиваются к мембране, лептотенные хромосомы своими теломерными участками (концами) располагаются в одном из полюсов ядра, образуя фигуру «букета» у животных и сжатие в клубок «синезис» - у растений. Такое расположение или ориентации в ядре позволяет хромосомам быстрее и легче осуществлять конъюгацию гомологичных локусов хромосом (рис. 1).

Центральное событие - таинствен­ный процесс узнавания гомологичных хромосом и их попарное сближение друг с другом происходит в зиготене профазы I. При конъюгации (сближении) гомологичных хромосом происходит образование пар - бивалентов и хромосомы заметно укорачиваются. С этого момента начинается формирование синаптонемного комплекса (СК). Формирование синаптонемного комплекса и синопсис хромосом - синонимы.

Рис. 1. Стадия профазы

В ходе следующей стадии профазы I – пахитене между гомологичными хромосомами усивается тесное соприкосновение, которое и называется синапсисом (от греч. synopsis - соединение, связь). Хромосомы в этой стадии сильно спирализованы, что делает возможным наблюдение их под микроскопом.

В ходе синапсиса гомологи переплетаются, т.е. конъюгируют. Конъюгирующие биваленты связаны хиазмами. Каждый бивалент состоит из двух хромосом и четырех хроматид, где каждая хромосома пришла от своего родителя. При образовании синапсиса (СК), происходит обмен участками между гомологичными хроматидами. Этот процесс, называемый кроссинговером, приводит к тому, что хроматиды теперь имеют иной состав генов.

Синаптонемный комплекс (СК) в пахитене достигает наибольшего развития и в этот период представляет собой лентовидную структуру, располагающуюся в пространстве между параллельно лежащими гомологичными хромосомами. СК состоит из двух параллельных латеральных элементов, сформированных плотно уложенными белками и менее плотного центрального элемента, протягивающегося между ними (рис. 2).

Рис. 2. Схема синаптонемного комлекса

Каждый латеральный элемент формируется парой сестринских хроматид в виде продольной оси лептотенной хромосомы и до того, как становится частью СК, носит название осевого элемента. Боковые петли хроматина лежат вне СК, окружая его со всех сторон.

Развитие СК в процессе мейоза :

лептотена-структура хромосом, вступивших в лептотену, сразу же оказывается необычной: в каждом гомологе наблюдается продольный тяж, идущий по оси хромосом на всем ее протяжении;

зиготена - на этой стадии осевые тяжи гомологов сближаются, при этом концы осевых тяжей, прикрепленных к ядерной мембране, как бы скользят по ее внутренней поверхности навстречу друг к другу;

пахитена. Наибольшее развитие СК достигает в пахитене, когда все элементы его приобретают максимальную плотность, а хроматин - вид плотной сплошной «шубы» вокруг него.

Функции СК:

1.Полностью развитый синаптонемный комплекс необходим для нормального удержания гомологов в биваленте так долго, как это необходимо для осуществления кроссинговера и закладки хиазм. Хромосомы соединяются с помощью синаптонемного комплекса на некоторое время (от 2 ч у дрожжей до 2–3 сут. у человека), в течение которого между гомологичными хромосомами совершается обмен гомологичными участками ДНК - кроссинговер (от англ, crossing over - образование перекреста).

2.Предотвращение слишком прочного соединения гомологов и удержание их на определенном расстоянии, сохранение их индивидуальности, создание возможности оттолкнуться в диплотене и разойтись в анафазе.

Процесс кроссинговера связан с работой определенных ферментов, которые при образовании хиазм между сестринскими хроматидами, «разрезают» их в месте перекреста с последующим воссоединением образовавшихся фрагментов. В большинстве случаев указанные процессы не приводят к каким-либо нарушениям в генетической структуре гомологичных хромосом, т.е. происходит правильное соединение фрагментов хроматид и восстановление их первоначального строения.

Однако, возможен и другой (более редкий) вариант событий, который связан с ошибочным воссоединением фрагментов разрезанных структур. При этом происходит взаимный обмен участками генетического материала между конъюгирующими хроматидами (генетическая рекомбинация).

На рис. 3 приведена упрощенная схема некоторых возможных вариантов одиночного либо двойного кроссинговера с участием двух хроматид из пары гомологичных хромосом. Необходимо подчеркнуть, что кроссинговер представляет собой случайное событие, которое с той или иной вероятностью может возникнуть на любом участке (либо на двух и большем числе участков) гомологичных хромосом. Следовательно, на этапе созревания гамет эукариотического организма в профазе первого деления мейоза действует универсальный принцип случайного (свободного) комбинирования (рекомбинации) генетического материала гомологичных хромосом.

В цитологических исследованиях синапсиса в последние два десятилетия важную роль играет метод распластывания профазных мейотических клеток животных и растений под действием гипотонического раствора. Метод вошел в цитогенетику после работ Мозеса и сыграл такую же роль, какую в свое время сыграл метод приготовления «давленых» препаратов для исследования метафазных хромосом, избавив цитогенетиков от микротомных срезов.

Метод Мозеса и его модификации стали более удобными, чем анализ СК на ультратонких срезах. Этот метод был положен в основу исследований мейоза и постепенно охватил вопросы генного контроля мейоза у животных и растений.

Рис. 3. Отдельные варианты одиночного и двойного кроссинговера с участием двух хроматид: 1 исходные хроматиды и вариант без кроссинговера; 2 одиночный кроссинговер на участке А В и кроссоверные хроматиды; 3 одиночный кроссинговер на участке В-С и кроссоверные хроматиды; 4 двойной кроссинговер и кроссоверные хроматиды нескольких разных участках на основе гомологичности генетического материала этих участков. Полагают, что с каждой стороны в процессе конъюгации могут участвовать либо одна из двух сестринских хроматид соответствующей хромосомы либо обе хроматиды.

В диппотене гомологичные хромосомы после спаривания и кроссинговера начинают отталкиваться друг от друга. Процесс отталкивания начинается с центромер. Расхождению гомологов препятствуют хиазмы - место соединения несестринских хроматид, возникших в результате перекреста. По мере расхождения хроматид некоторые хиазмы смещаются к концу плеча хромосомы. Обычно перекрестов бы­вает несколько, и чем длиннее хромосомы, тем их больше, поэтому в диплотене, как правило, несколько хиазм в одном биваленте.

В стадии диакинеза происходит уменьшение числа хиазм. Биваленты располагаются по периферии ядра. Ядрышко растворяется, мембрана разрушается и начинается переход к метафазе I. На протяжении всей профазы сохраняется ядрышко и ядерная оболочка. Перед профазой в период синтетического периода интерфазы происходит репликация ДНК и репродукция хромосом. Однако полностью этот синтез не заканчивается: ДНК синтезируется на 99,8%, а белки - на 75%. Синтез ДНК заканчивается в пахитене, белков - в диплотене.

В метафазе I становится заметной веретеновидная структура, образуемая микротрубочками. В ходе мейоза к центромерам хромосом каждого бивалента прикрепляются отдельные микрокрубочки. Затем пары хромосом перемещаются в экваториальную плоскость клетки, где выстраиваются в случайном порядке. Центромеры гомологичных хромосом располагаются в противоположных сторонах от экваториальной плоскости; в метафазе митоза, напротив, центромеры отдельных хромосом располагаются в экваториальной плоскости.

В метафазе I биваленты располагаются в центре клетки, в зоне экваториальной пластинки (рис. 4).

Рис. 4. Стадии мейоза: профаза I - метафаза I

Анафаза начинается с расхождения гомологичных хромосом и движения их в направлении полюсов. У хромосом без центромера крепления не может существовать. В анафазе митоза цент­ромеры делятся и идентичные хроматиды расходятся. В анафазе I мейоза центромеры не делятся, хроматиды остаются вместе, а разъединяются гомологичные хромосомы. Однако из-за обмена фрагментами в результате кроссинговера хроматиды не идентич­ны, как в начале мейоза. В анафазе I конъюгирующие гомологи расходятся к полюсам.

В дочерних клетках число хромосом вдвое меньше (гаплоидный набор), при этом масса ДНК уменьшается также вдвое и хромосомы остаются дихроматидными. Точное расхождение гомологичных пар к противоположным полюсам лежит в основе редукции их числа.

В телофазе I происходит сосредоточение хромосом у по­люсов, некоторая их деконденсация, за счет чего спирализация хромосом ослабевает, они удлиняются и снова становятся не­различимыми (рис. 5). По мере того как телофаза постепенно переходит в интерфазу, из эндоплазматического ретикулума возникает ядерная оболочка (в том числе и из фрагментов оболочки ядра материнской клетки), а также клеточная пере­городка. Наконец вновь образуется ядрышко и возобновляется синтез белка.

Рис. 5. Стадии мейоза: анафаза I - телофаза I

В интеркинезе образуются ядра, в каждой из которых находится n дихроматидных хромосом.

Особенность второго деления мейоза состоит, прежде всего, в том, что в интерфазе II не происходит удвоения хроматина, поэтому каждая клетка, вступающая в профазу II, сохраняет прежнее соотношение n2с.

Второе деление мейоза

В период второго деления мейоза сестринские хроматиды каждой хромосомы расходятся к полюсам. Поскольку в про­фазе I мог произойти кроссинговер и сестринские хроматиды могли стать неидентичными, то принято говорить, что второе деление протекает по типу митоза, однако это не настоящий митоз, при котором в норме дочерние клетки содержат хромо­сомы идентичные по форме и набору генов.

В начале второго мейотического деления хроматиды все еще связаны центромерами. Это деление похоже на митоз: если в телофазе I образовалась ядерная оболочка, то теперь она раз­рушается, и к концу короткой профазы II исчезает ядрышко.

Рис. 6. Стадии мейоза: профаза II-метафаза II

В метафазе II снова можно увидеть веретено и хромосомы, состоящие из двух хроматид. Хромосомы прикрепляются цент­ромерами к нитям веретена и выстраиваются в экваториальной плоскости (рис. 6). В анафазе II центромеры делятся и расходятся, а сестринские хроматиды, ставшие теперь хромосомами, движутся к противоположным полюсам. В телофазе II образуются новые ядерные оболочки и ядрышки, сжатие хромосом ослабевает и в интерфазном ядре они становятся невидимыми (рис. 7).

Рис. 7. Стадии мейоза: анафаза II - телофаза II

Завершается мейоз формированием гаплоидных клеток - гаметы, тетрады спор - потомков исходной клетки с редукционным вдвое (гаплоидным) набором хромосом и гаплоидной массой ДНК (исходная клетка 2n, 4с, - споры, гаметы - n, с).

Общая схема распределения хромосом гомологичной пары и содержащихся в них двух пар различающихся аллельных генов во время двух делений мейоза приведена на рис.8. Как видно из этой схемы, возможны два принципиально разных варианта такого распределения. Первый (более вероятный) вариант связан с образованием двух типов генетически различающихся гамет с хромосомами, не претерпевшими кроссинговеров на участках, где локализованы рассматриваемые гены. Такие гаметы принято называть некроссоверными. При втором (менее вероятном) варианте наряду с некроссоверными возникают также кроссоверные гаметы как результат генетического обмена (генетической рекомбинации) в участках гомологичных хромосом, расположенных между локусами двух неаллельных генов.

Рис. 8. Два варианта распределения хромосом гомологичной пары и содержащихся в них неаллельных генов как результат двух делений мейоза



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения