Подпишись и читай
самые интересные
статьи первым!

Бактериологический метод диагностики. Основные этапы

Лабораторные методы исследования при ряде нозологических форм играют ведущую, а в целом ряде клинических ситуаций решающую роль не только в диагностике, но и в определении конечного исхода заболевания. Роль диагностики состоит в том, что ранний, точный, исчерпывающий и максимально конкретный диагноз является основой для проведения рациональной и эффективной терапии, позволяет в большинстве случаев предсказать возможные варианты дальнейшего течения и исходов заболевания, служит начальным моментом в проведении своевременных и направленных противоэпидемических и профилактических мероприятий.
Диагностика инфекционных заболеваний почти всегда предусматривает использование комплекса лабораторных методов.

В современных условиях диагностика инфекционных болезней сохраняет все свои традиционные черты, сформировавшиеся за последние десятилетия. В то же время она характеризуется непрерывным совершенствованием уже найденных приемов и методов распознавания болезней и поисками новых, более эффективных, в том числе экспрессных.
Различают следующие методы микробиологической диагностики бактериальных инфекций: бактериоскопический (микроскопический), бактериологический (культуральный), биологический (экспериментальный), иммунологический (серологический), аллергический.
Основным методом является бактериологическое исследование. Он заключается в посеве исследуемого материала на питательные среды, выделении чистой культуры возбудителя и его идентификации. Определение вида возбудителя производят по ряду признаков: морфологии, тинкториальным свойствам (способность окрашиваться различными красителями), культуральным свойствам (характер роста на искусственных питательных средах), биохимическим свойствам (ферментация углеводов и белков). Окончательную принадлежность выделенной культуры к определенному виду микроорганизмов устанавливают после изучения антигенной структуры, используя различные иммунологические реакции (агглютинации, преципитации, нейтрализации и др.). В целом бактериологический метод исследования представляет собой многоэтапное бактериологическое исследование, которое длится от 18— 24 часов до нескольких суток.

Бактериологический метод имеет множество достоинств. Одним из первых является изучение с его помощью качественного состава микрофлоры исследуемого биологического материала. Для постановки диагноза важное значение имеет количество микроорганизмов в 1 г изучаемого вещества и 1 мл жидкости, так называемое общее микробное число, измеряемое в колиниеобразующих единицах (КОЕ/г или КОЕ/мл). Для этого проводят посев определенного количества исследуемого материла на плотные питательные среды, после инкубации в термостате подсчитывают количество выросших колоний (колония - это видимое изолированное скопление представителей одного вида микроорганизмов, образующееся при размножении одной колониеобразующей единицы на плотной питательной среде).
К наиболее впечатляющим результатам, достигнутым микробиологией, относятся создание и внедрение в практику антибиотиков. В связи с широким распространением лекарственно-устойчивых форм бактерий, для назначения рациональной химиотерапии необходимо определение антибиотикограммы - чувствительности к антибактериальным препаратам выделенной чистой культуры возбудителя. Для антибиотикограммы используют либо метод бумажных дисков, либо метод серийных разведений.
Метод бумажных дисков базируется на выявлении зоны подавления размножения бактерий вокруг дисков, которые пропитаны антибиотиками. В случае применения метода серийных разведений антибиотик разводят в пробирках с жидкой питательной средой, затем засеивают в пробирки одинаковое количество бактерий. По отсутствию или наличию роста бактерий проводят учет результатов. С помощью метода серийных разведений проводится определение минимальной подавляющей концентрации (МИК) антибиотика, которая служит для расчета терапевтической дозы препарата.

Бактериологический метод позволяют поисследовать механизмы антибиотикорезистентности выделенных культур (метициллинрезистентность, продукция b-лактамаз). Также можно оценить концентрацию антибиотика в очаге инфекционного процесса, изменение антибиотикочувствительности в динамике лечения.
Для врача-клинициста важно знать, насколько эффективно проводимое антимикробное лечение, поэтому возможно оценивать динамику изменения качественного и количественного состава в ходе заболевания и терапии. С помощью бактериологического метода диагностики можно определить, каков исход инфекционного процесса - выздоровление, носительство, хронизация.
Основными возбудителями инфекционных заболеваний в настоящее время выступает условно-патогенные микроорганизмы, роль которых в генезе заболевания сложно доказать. Поэтому немаловажно оценить патогенность выделенной условно-патогенной микрофлоры.
Организм человека заселен представителями так называемой нормальной микрофлоры, изменение качественно-количественного состава котрой может играть роль в развитии дисбиотических нарушений. Поэтому можно проводить исследование микрофлоры организма человека - в норме и при дисбиозах, межмикробные взаимоотношения при терапии эубиотиками.
Любые медицинские учреждения подвержены риску развития внутрибольничной инфекции. Диагностика ее, определение возбудителя, выявление источника инфекции, доказательства идентичности штаммов - составляющая часть работы бактериологической лаборатории (3).
Современный этап развития микробиологии характеризуется новыми открытиями, сделанным при изучении механизмов формирования патологических состояний. Основными считают установление факта существования бактерий в организме человека в составе различных сообществ, получивших общее название биопленки, и выявление опосредованного действия микробов на организм человека. Свойства бактерий в биопленках отличаются от таковых у изолированных клеток, что сказывается на всех аспектах взаимодействия микроба и окружающей среды, включая факторы иммунной защиты и антимикробные препараты (4,5).
Биопленка - хорошо организованное, взаимодействующее сообщество микроорганизмов (Quorum sensing - чувство кворума). 99% бактерий в природных экосистемах, 80% бактерий при инфекционных заболеваниях существуют в виде биофильма.

Биопленка связывает клетки, органические и неорганические субстраты, повышает адгезию бактерий к эпителию и любым поверхностям (живого и неживого происхождения), снижает эффективность антибактериальной терапии, помогает выживать бактериям в меняющейся внешней среде. Микроорганизмы в биопленке более устойчивы к действию как антибактериальных препаратов, так и факторов неспецифической противоинфекционной защиты организма человека.
Механизмы увеличения устойчивости бактерий к антибиотикам в биопленках связаны с ограничением проникновения антибиотиков через нее, уменьшением скорости деления бактерий, вследствие чего остается меньше мишеней для действия антибиотиков, генетическими изменениями у персистирующих в биопленке бактерий.
С помощью бактериологического метода можно изучать механизмы защиты микроба от иммунной системы организма, стратегию выживания его в макроорганизме - персистенцию. Микробы имеют механизмы защиты от иммунной системы человека - антилизоцимную, антикомплементарную, антилактоферриновую активность.
Таким образом, в настоящее время бактериологический метод диагностики позволяет исследовать многие аспекты жизнедеятельности болезнетворных бактерий, механизмы их развития, выживания и подавления.

Литература

1. Тец В.В. Микроорганизмы и антибиотики. Инфекции кожи, мягких тканей, костей и суставов. — СПб.: КЛЕ Т, 2006. — 128 с.
2. Практическое руководство по антиинфекционной химиотерапии /Под ред. Л. С. Страчунского, Ю. Б. Белоусова, С. Н. Козлова. Смоленск: МАКМАХ, 2007. - 464 с.
3. Руднов В.А.Современное клиническое значение синегнойной инфекции и возможности ее терапии у пациентов отделений реанимации Инфекция и антимикробная терапия 2002. - Т. 4, №3
4. Сидоренко С.В. Роль бактериальных биопленок в патологии человека // Инфекции в хирургии. 2004. - Т. 2,№ 3. - С. 16-20.
5. Anwar H., Strap J.L., Costerton J.W. Eradication of bio?lm cells of Staphylococcus aureus with tobramycin and cephalexin. // Can. J. Microbiol. 1992. - V. 38. - P. 618-625.

Практическое занятие №2.

Тема: Бактериологический метод диагностики инфекционных заболеваний.

Цель: Изучить методы выделения чистых культур бактерий и овладеть бактериологическим методом диагностики инфекционных заболеваний.

Вопросы для самоподготовки:

1.Правила забора и транспортировки исследуемого материала для бактериологического исследования.

2Правила оформления направления на бактериологическое исследование.

3.Методы выделения чистых культур микроорганизмов.

4.Бактериологический метод диагностики. Цель. Этапы. Диагностическая ценность.

Основные понятия темы.

Бактериологический метод является основным методом диагностики инфекционных заболеваний. Его сущность – определение вида возбудителя инфекции, следовательно, на основании результатов бактериологического метода можно поставить этиологический (окончательный) диагноз. Основным недостатком метода является длительность исследования – от 3 до 5 суток, а в отдельных случаях и более.

Успех проведения бактериологического метода во многом зависит от предварительного этапа, включающего забор исследуемого материала и его транспортировку, оформление направления в бактериологическую лабораторию. При этом необходимо соблюдение ряда правил.

Забор исследуемого материала необходимо провести до начала антибактериальной терапии или через 8-10 часов после введения последней дозы . Чтобы избежать загрязнения пробы микрофлорой окружающей среды необходимо соблюдать строжайшую асептику. Для этого использовать стерильный материал: а) ватные тампоны для взятия материала из раны, со слизистых оболочек (глаз, зева, носа); б) проволочную петлю для материала из влагалища, анального отверстия; в) шприц для взятия крови, гноя; г) стерильную посуду для непосредственного сбора в нее мочи, мокроты, испражнений. Транспортировку полученного материала следует производить в максимально короткие сроки (2-3 часа) в специальных биксах или пеналах. Направление прилагают к клиническому образцу в качестве сопроводительного документа. Оно содержит основные сведения, необходимые для проведения микробиологического исследования:

    фамилия, имя, отчество, возраст пациента; предполагаемый диагноз заболевания; предшествующая антимикробная терапия; характер материала; дата и время взятия материала; цель исследования; название лечебного учреждения, номер отделения, палаты; подпись лечащего врача.

Бактериологический метод осуществляется в два этапа (рис.2.1.):


Выделение чистой культуры возбудисуток); Идентификация чистой культуры (1-3 суток).

На первом этапе проводится посев исследуемого материала на твердую или в жидкую питательную среду, оценка культуральных свойств, отбор подозрительных колоний и их отсев на скошенный агар. Этап идентификации включает обязательное изучение , свойств и структуры выделенной чистой культуры, а также проведение дополнительных исследований по определению антибиотикочувствительности, фагочувствительности, фаготипирования, изучения патогенности и персистентных свойств.

Самостоятельная работа студентов на занятии.

Работа 1

Цель: Освоить бактериологический метод диагностики.

Задача. В бактериологическую лабораторию поступил исследуемый материал (испражнения) от больного с предварительным диагнозом: «Пищевая токсикоинфекция?». При микроскопии материала обнаружены грамположительные кокки и грамотрицательные палочки.

Выделите чистые культуры микроорганизмов, проведите их идентификацию. Определите этиологию пищевой токсикоинфекции.

Методика:

Все этапы бактериологического метода условно осуществляются в течение одного занятия: студент выполняет манипуляции очередного этапа, относит материал в термостат и сразу получает готовый результат для выполнения следующего этапа исследования.

1. Посев исследуемого материала на агар в чашке Петри методом механического разобщения с целью получения отдельных колоний (1-ый день).

Простерилизованной в пламени горелки и охлажденной петлей берут материал для посева и вносят в чашку, слегка приоткрыв крышку. На поверхности питательной среды материал распределяют петлей следующим образом: у края чашки частыми штрихами образуют овальную площадку, на которой остается значительная часть материала, затем проводят параллельные штрихи на расстоянии 0,5 см от одного края чащики к другому. При посеве петлю следует держать параллельно агару, чтобы не царапать его (рис.2.2.а). После рассева петлю вынимают из чашки и немедленно обжигают в пламени, одновременно закрывая чашку Петри крышкой. Чашку маркируют и помещают вверх дном в термостат на сутки.

2.Изучение культуральных свойств выросших колоний (2-ой день).

Через сутки при правильном посеве на последних штрихах вырастают отдельные колонии (рис.2.2.б). Дифференцируют разные типы колоний по величине, цвету (Рис. 2.3.а), форме, прозрачности, характеру поверхности (гладкая, шероховатая) и края (ровный, зазубренный) (рис.2.3.б). Из материала части колоний готовят мазок, окрашивают по Граму и микроскопируют. Остаток изучаемой колонии отсевают петлей в пробирку на скошенный питательный агар для получения чистой культуры. Посев ставят в термостат на сутки.

3. Идентификация выделенной чистой культуры (3-ий день).

Через сутки выросшую чистую культуру идентифицируют по основным видовым признакам. Изучают морфологию при микроскопии мазка из чистой культуры. Осуществляют посев чистой культуры на тест-системы (стафитест, энтеротест) для изучения активности. Для этого готовят 1-миллиардную взвесь бактерий в физиологическом растворе, затем дозаторными или пастеровскими пипетками вносят 0,1 мл взвеси в лунки тест-системы. Планшет относят в термостат на сутки.

4. Определение вида выделенных микроорганизмов (4-ый день).

Через 24 часа оценивают результаты биохимической активности по изменению цвета индикатора в лунке и сопоставляют их с таблицами тест-системы. По результатам изучения свойств выделенных чистых культур определяют виды микроорганизмов, что является одной из конечных целей бактериологического метода диагностики. Используют определитель Берджи.

Результат оформляют в виде протокола исследования.

ПРОТОКОЛ ИССЛЕДОВАНИЯ.

4.2. БИОЛОГИЧЕСКИЕ И МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Бактериологическая диагностика брюшного тифа и паратифов А, В и С

Дата введения: с момента утверждения

1. РАЗРАБОТАНЫ: ФГУН Санкт-Петербургский НИИЭМ им. Пастера Роспотребнадзора (Л.А.Кафтырева, З.Н.Матвеева, Г.Ф.Трифонова); ГОУВПО "Санкт-Петербургская государственная медицинская академия им. И.И.Мечникова" Федерального агентства по здравоохранению и социальному развитию (А.Г.Бойцов).

3. УТВЕРЖДЕНЫ Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г.Онищенко 29 декабря 2007 г. 0100/13745-07-34

4. ВВЕДЕНЫ В ДЕЙСТВИЕ с момента утверждения.

5. ВВЕДЕНЫ ВПЕРВЫЕ.

1. Область применения

1. Область применения

1.1. В методических рекомендациях изложены основные принципы и особенности бактериологической диагностики брюшного тифа и паратифов А, В и С; содержатся современные сведения о биологических свойствах возбудителей, резистентности к антибактериальным препаратам, о питательных средах для их выделения и особенностях дифференциации возбудителей брюшного тифа и паратифов от других серологических вариантов сальмонелл.

2. Список сокращений

АБП - антибактериальный препарат

ВСА - висмут-сульфит агар

ЛПУ - лечебно-профилактическое учреждение

МПК - минимальная подавляющая концентрация

П - промежуточный

У - устойчивый

Ч - чувствительный

РИФ - реакция иммунофлюоресценции

ЦНС - центральная нервная система

В таблицах:

"+" - положительная реакция в первые сутки;

"-" - отрицательная реакция на 4-20 сутки;

"(+)" - замедленная положительная реакция на 2-20 сутки;

d - различные ферментативные реакции.

Возможна дифференциация на ферментативные варианты.

3. Общие положения

3.1. Брюшной тиф и паратифы А, В и С являются антропонозными кишечными инфекциями, вызываемыми микроорганизмами Salmonella Typhi, Salmonella Paratyphi A, Salmonella Paratyphi В и Salmonella Paratyphi С. В настоящее время чаще регистрируется брюшной тиф, реже - паратиф В, редко - паратиф А и крайне редко - паратиф С.

3.2. Заболевания характеризуются язвенным поражением лимфатической системы тонкой кишки, бактериемией, лихорадкой, циклическим клиническим течением с выраженной интоксикацией, розеолезной сыпью на кожных покровах туловища, гепато- и спленомегалией. Более характерен запор, нежели диарея. Изъязвление пейеровых бляшек подвздошной кишки примерно в 1% случаев приводит к кишечному кровотечению и прободению кишечника с самыми неблагоприятными последствиями для больного.

3.3. Диагноз брюшного тифа и паратифов А, В и С ставится на основании клинических признаков болезни с учетом эпидемиологического анамнеза и данных комплексного лабораторного обследования, которое включает классические бактериологический и серологический методы. Бактериологическая диагностика имеет приоритетное значение, т.к. в этом случае удается получить наиболее полную информацию о биологических свойствах возбудителя, включая его чувствительность к антибактериальным препаратам.

3.4. Применение антимикробных препаратов для этиотропной терапии брюшного тифа и паратифов позволило, с одной стороны, снизить летальность с 10-20% до уровня менее 1%, а с другой стороны - осложнило лабораторную диагностику, т.к. нередко забор материала для лабораторного исследования осуществляется уже после начала антибиотикотерапии. Этот факт заставляет более тщательно подходить к вопросу выбора материала для исследования, взятия исследуемого материала, техники исследования.

3.5. Современной особенностью эпидемиологии брюшного тифа является резкое увеличение частоты завоза (заноса) инфекции с эндемичных по этому заболеванию территорий, стран ближнего и дальнего зарубежья, а также заражение жителей России при выезде в эти страны и в процессе миграции внутри страны. Другой особенностью является наличие обширного контингента высокого эпидемиологического риска в виде лиц без определенного места жительства, среди которых регистрируется высокая заболеваемость брюшным тифом.

3.6. Данные методические рекомендации составлены с целью унификации методов бактериологической диагностики брюшного тифа и паратифов А, В и С, а также правильной интерпретации результатов лабораторного исследования с учетом современных особенностей клиники, лечения и эпидемиологической обстановки на конкретных территориях.

4. Показания к проведению бактериологической диагностики

Показанием к проведению бактериологического исследования биологического материала на наличие возбудителей брюшного тифа и паратифов А, В и С является необходимость обследования:

4.1) больных с подозрением на тифопаратифозное заболевание, а также с лихорадкой неясной этиологии, продолжающейся 5 и более дней;

4.2) лиц, общавшихся с больными брюшным тифом и паратифами А, В, С;

4.3) работников отдельных профессий, производств и организаций при поступлении на работу и по эпидемиологическим показаниям;

4.4) лиц перед поступлением в стационары и специализированные санатории по клиническим и эпидемиологическим показаниям;

4.5) лиц при оформлении на стационарное лечение в больницы (отделения) психоневрологического (психосоматического) профиля, дома престарелых, интернаты для лиц с хроническими психическими заболеваниями и поражениями ЦНС, в другие типы закрытых учреждений с круглосуточным пребыванием;

4.6) больных брюшным тифом и паратифами после исчезновения клинических симптомов перенесенного заболевания перед выпиской из стационара;

4.7) лиц, переболевших брюшным тифом и паратифами, во время диспансерного наблюдения;

4.8) хронических бактерионосителей, выявленных среди работников отдельных профессий, производств и организаций, при повторном поступлении на работу на указанные предприятия и объекты;

4.9) секционного материала при подозрении на заболевание брюшным тифом и паратифами.

5. Материально-техническое обеспечение метода

5.1. Стандартное испытательное и вспомогательное оборудование, средства измерения для микробиологических лабораторий.

5.2. Питательные среды, диагностические сыворотки и химические реагенты для культивирования, выделения, идентификации и определения чувствительности к антибактериальным препаратам возбудителей брюшного тифа и паратифов А, В и С.

5.3. Для лабораторной диагностики тифо-паратифозных заболеваний и выявления бактерионосителей должны использоваться питательные среды и реагенты, разрешенные к применению на территории Российской Федерации в установленном порядке.

6. Лабораторная диагностика брюшного тифа и паратифов

6.1. Принцип бактериологического метода основан на обнаружении живых микроорганизмов в различных биологических субстратах (кровь, моча, кал, желчь, костный мозг, розеолы) в зависимости от стадии заболевания. Для этого производят посев определенного количества биологического материала на специальные питательные среды с последующей инкубацией в термостате и идентификацией выросших колоний микроорганизмов, характерных для S. Typhi, S. Paratyphi A, S. Paratyphi В и S. Paratyphi С, по культурально-ферментативным свойствам и антигенной характеристике.

6.2. Только бактериологическое исследование может обеспечить точную постановку этиологического диагноза и контроль освобождения организма от возбудителя. В отношении дифференциальной диагностики брюшного тифа и паратифов единственным методом является лабораторное исследование биологического материала с выделением возбудителя и идентификация его до уровня серологического варианта, т.к. клиническое течение инфекционного процесса не всегда позволяет различить эти нозологические формы.

7. Бактериологическое исследование

7.1. Выделение возбудителей брюшного тифа и паратифов А, В и С проводят по одной и той же схеме бактериологического исследования биоматериалов.

7.2. Порядок сбора материала для лабораторных исследований на тифо-паратифозные заболевания определен СП 3.1.1.2137-06 .

7.3. Техника сбора и транспортирования биоматериалов в микробиологические лаборатории описана в МУ 4.2.2039-05 .

7.4. Материалом для бактериологического исследования с целью диагностики брюшного тифа и паратифов являются:

кровь;

испражнения;

моча;


Возбудители могут быть также выделены из:

розеол;

костного мозга;

грудного молока.

Материалом для бактериологического исследования с целью выявления бактерионосителей, согласно СП 3.1.1.2137-06 , являются:

испражнения;

моча;

желчь (дуоденальное содержимое).

7.5. Исследование секционного материала проводится с целью уточнения диагноза.

7.6. Сбор биологического материала для лабораторных исследований осуществляется до начала этиотропного лечения: медицинским работником, заподозрившим тифо-паратифозную инфекцию; при групповой и вспышечной заболеваемости - специалистами учреждений Роспотребнадзора и персоналом лечебно-профилактических учреждений. От госпитализируемых больных материал для бактериологического исследования забирается в приемном отделении стационара.

7.7. От лиц, общавшихся с больными или носителями (контактными), сбор материала проводится медицинскими работниками ЛПУ и других организаций и учреждений по месту выявления больных.

7.8. Биоматериал для лабораторного исследования сопровождают специальным направлением. Доставка материала самими обследуемыми не допускается. При невозможности своевременной доставки материала используют консерванты и транспортные среды (табл.1).

8. Бактериологическое исследование крови

Показанием к исследованию крови является подозрение на тифо-паратифозные заболевания или лихорадочное состояние невыясненного происхождения (лихорадка неясного генеза), наблюдающееся в течение 5 и более дней (СП 3.1.1.2137-06).

Соотношение кровь - питательная среда должно быть 1:10-1:60. Количество независимо отбираемых проб крови и время их взятия определяется лечащим врачом согласно МУ 4.2.2039-05 при лихорадке неясного генеза или согласно МУ 04-723/3 МЗ СССР (1984) при подозрении на тифо-паратифозные заболевания. У больных, получающих антибактериальные препараты, пробы необходимо собирать непосредственно перед введением (приемом) следующей дозы препарата.

При наличии лихорадки оптимальным является взятие крови на фоне повышения температуры тела (но не на пике температуры!). Посев на питательные среды проводят непосредственно у постели больного.

При подозрении на тифо-паратифозные заболевания для посева крови можно использовать среду Рапопорт, 20%-й желчный бульон, мясопептонный бульон с добавлением 1%-й глюкозы (во флаконах по 100 мл). Ранее использовали посев крови в стерильную дистиллированную (водопроводную) воду. Однако предпочтительнее использовать специальные среды для посева крови.

Количество засеваемой крови в разгар лихорадки может составлять 10 мл, в более поздние сроки - до 20 мл (у детей - до 5 мл).

При лихорадке неясного генеза продолжительностью более 5 дней, как правило, должны исследоваться несколько проб крови. Взятие крови из вены проводят согласно МУ 4.2.2039-05 . Это необходимо для дифференциации истинной бактериемии от случайной контаминации крови при венопункции (вероятность загрязнения пробы вследствие случайного прокола сальной или потовой железы составляет 3%). Для посева крови в этом случае используют две среды: 1) среду для аэробов и факультативных анаэробов и 2) среду для облигатных анаэробов (например, "двойная" среда + тиогликолевая среда согласно приказу МЗ СССР от 12.04.85 N 535) или универсальную среду для аэробов и анаэробов.

Предпочтительно использовать промышленно произведенные среды, разрешенные к применению в России.

Посевы инкубируют при 37 °С в течение 10 суток с ежедневным просмотром. При этом флаконы с "двойной" средой наклоняют, омывая плотную часть среды.

При отсутствии признаков роста на 10-й день выдается отрицательный ответ.

При наличии признаков роста (помутнение, покраснение среды Рапопорт, появление видимых колоний на плотной части "двойной" среды) проводят высев параллельно на полиуглеводную среду и плотную среду в чашках Петри (кровяной агар в случае лихорадки неясного генеза и среда Эндо при подозрении на тифо-паратифозные заболевания).

Прямой высев на полиуглеводные среды проводят для сокращения сроков исследования, исходя из предположения, что при посеве крови с высокой вероятностью будет наблюдаться рост монокультуры возбудителя. Для контроля этого предположения и выделения чистой культуры путем откола отдельных колоний необходим параллельный высев на среду Эндо или кровяной агар.

Если на этих средах наблюдается рост монокультуры, то можно учитывать биохимические свойства по полиуглеводной среде. Для контроля чистоты культуры необходимо провести микроскопию мазка с полиуглеводной среды, окрашенного по Граму. На этом этапе возможна также постановка реакции агглютинации на стекле с соответствующими агглютинирующими О- и Н-сальмонеллезными сыворотками и выдача предварительного ответа.

Схема бактериологического исследования крови пациентов с подозрением на брюшной тиф и паратифы представлена на рис.1.

Рис.1. Схема бактериологического исследования крови пациентов с подозрением на брюшной тиф и паратифы

Рис.1. Схема бактериологического исследования крови пациентов с подозрением на брюшной тиф и паратифы


Схема бактериологического исследования крови пациентов при лихорадке неясного генеза представлена на рис.2.

Рис.2. Схема бактериологического исследования крови пациентов с лихорадкой неясного генеза

Рис.2. Схема бактериологического исследования крови пациентов с лихорадкой неясного генеза


Ход дальнейшей идентификации культуры по культурально-морфологическим, ферментативным свойствам и серологической характеристике изложен далее в соответствующих разделах.

9. Бактериологическое исследование испражнений

Пробы испражнений отбирают сразу после дефекации из дезинфицированного и тщательно вымытого судна, на дно которого был помещен лист плотной чистой бумаги. Материал собирается с помощью ложки-шпателя, вмонтированного в крышку стерильного контейнера. В отсутствие контейнера со шпателем для отбора материала используют любой стерильный инструмент (стерильный деревянный шпатель, проволочная петля, ложечка и т.п.). При наличии патологических примесей необходимо выбрать участки, содержащие слизь, гной, хлопья, но свободные от крови. Образцы жидких испражнений отбирают с помощью стерильной пластиковой пастеровской пипетки с замкнутым резервуаром.

Объем забираемого материала должен быть не менее 2 г. Оптимальным является взятие материала в случае оформленного стула - в объеме грецкого ореха; в случае жидкого стула его слой в контейнере должен быть не менее 1,5-2,0 см. Материал, помещенный в стерильный контейнер, доставляется в лабораторию в течение 2 ч.

Если материал невозможно доставить в лабораторию в течение 2 ч, его собирают в консервант (транспортную систему со средой). Объем материала не должен превышать объема среды.

Испражнения должны быть тщательно гомогенизированы в среде. Образцы могут храниться до начала исследования в течение суток в условиях холодильника (4-6 °С).

Транспортные среды и консерванты, используемые для выделения возбудителей брюшного тифа и паратифов А, В и С, а также других возбудителей острых кишечных инфекций, представлены в табл.1.

Таблица 1

Транспортные среды и консерванты, наиболее часто используемые для транспортирования испражнений

Название среды

Обеспечивает сохранение

среда Кэрри-Блер

всех кишечных патогенов, включая кампилобактерии

среда Эймс

всех энтеробактерий

среда Стюарт

сальмонелл и шигелл

глицериновая смесь

всех энтеробактерий, кроме иерсиний; предпочтительна для шигелл

фосфатная буферная смесь

всех энтеробактерий

боратно-буферный раствор

всех энтеробактерий

физиологический раствор

всех энтеробактерий, включая кампилобактерии


Пробы испражнений, собранные непосредственно из прямой кишки с помощью ректального тампона, используют преимущественно для объективизации диагноза (МУ 4.2.2039-05). Взятие материала осуществляется средним медицинским персоналом. Как правило, специальный зонд для взятия мазка входит в состав транспортной системы. Важно отметить, что попадание транспортных сред на слизистую прямой кишки недопустимо! Поэтому ректальный тампон должен погружаться в транспортную среду только после взятия материала. Больного просят лечь на бок с притянутыми к животу бедрами и ладонями развести ягодицы. Зонд-тампон вводят в задний проход на глубину 4-5 см и, аккуратно вращая его вокруг оси, собирают материал с крипт ануса. Осторожно извлекают зонд-тампон и погружают его в транспортную среду. Транспортирование тампона без среды не допускается.

В лаборатории посев проб испражнений проводят непосредственно на плотные дифференциально-диагностические питательные среды и параллельно на среду обогащения.

Схема бактериологического исследования испражнений представлена на рис.3.

Рис.3. Схема бактериологического исследования испражнений

Рис.3. Схема бактериологического исследования испражнений

Из нативных испражнений готовят суспензию в 0,9%-м растворе хлорида натрия в соотношении 1:5-1:10, оставляют на 30 мин для оседания крупных частиц. После этого одну каплю надосадочной жидкости засевают на чашки с плотными питательными средами и 1 мл суспензии - в среду обогащения (соотношение материал-среда должно быть 1:5).

Испражнения, доставленные в лабораторию в консерванте (транспортной среде), перед посевом должны быть тщательно гомогенизированы в среде, после чего проводят прямой посев материала на плотные среды и среду обогащения в тех же соотношениях, что и нативные испражнения.

Пробы испражнений, собранные с помощью ректального тампона, исследуются аналогично испражнениям, доставленным в консерванте. Следует помнить, что ректальный тампон содержит меньшее количество микроорганизмов по сравнению с нативными испражнениями, поэтому посевная доза должна быть увеличена.

Максимальное выявление S. Typhi, S. Paratyphi A, S. Paratyphi В и S. Paratyphi С в испражнениях достигается при использовании сред обогащения, хотя у больных в остром периоде заболевания возбудитель достаточно часто выделяют и при прямом посеве. Посев на среды обогащения параллельно с прямым высевом обязателен!

Все посевы инкубируют при 37 °С на дифференциально-диагностических средах 18-24 ч, на висмут-сульфит агаре - 24-48 ч. Через 24 ч проводят высев со сред обогащения на плотные среды (висмут-сульфит агар или среду Эндо). Колонии, характерные для данных возбудителей, выросшие на плотных средах, отсевают на полиуглеводную среду.

Необходимо отметить, что техника распределения материала по поверхности чашки с плотными средами должна обеспечить рост изолированных колоний типичного вида, по которому можно визуально оценить культуральные свойства микроорганизма.

Для выделения S. Typhi предпочтительнее использовать висмут-сульфит агар (ВСА). Типичные колонии S. Typhi имеют черный цвет и окружены черным или коричневым ободком с металлическим блеском. Однако при обильном росте S. Typhi часто не дает характерного почернения ВСА, поэтому чашки должны быть засеяны так, чтобы обеспечить рост отдельных колоний.

Пробы фекалий можно засевать на стандартные селективные среды для энтеробактерий, разрешенные к применению на территории Российской Федерации. Тем не менее, для выделения S. Турhi предпочтительнее всего использовать висмут-сульфит агар. Ход дальнейшей идентификации культур по ферментативным свойствам и серологической характеристике изложен далее в соответствующих разделах.

10. Бактериологическое исследование мочи

Посев мочи производят для диагностики с первых дней заболевания и вплоть до выписки больного, а также с целью выявления бактерионосительства. Так как при тифе и паратифах выделение возбудителя с мочой происходит периодически и кратковременно, исследования мочи необходимо проводить повторно с промежутками 5-7 дней.

Следует строго придерживаться общих правил сбора мочи, изложенных в МУ 4.2.2039-05 . Вне зависимости от способа получения мочи, она должна быть доставлена в лабораторию в течение 2 ч. В крайнем случае допускается хранение мочи в течение ночи в холодильнике.

Следует помнить, что в зависимости от химического состава мочи бактерии в ней могут при хранении как отмирать, так и размножаться.

Увеличение срока сохранения материала может крайне затруднить интерпретацию результата.

Производят прямой посев мочи (или осадка после центрифугирования) без предварительного обогащения согласно приказу МЗ СССР N 535 на плотные дифференциально-диагностические среды, рекомендуемые для сальмонелл, в том числе возбудителей брюшного тифа и паратифов. Параллельно нативная моча засевается в среды обогащения двойной концентрации в соотношении 1:1 или осадок мочи - в среды обычной концентрации. Посевы помещают в термостат при 37 °С на 18-24 ч, а затем со среды обогащения производят высев на плотные дифференциально-диагностические среды. Колонии, выросшие на плотных средах, идентифицируют по культурально-ферментативным и серологическим свойствам.

11. Бактериологическое исследование желчи (дуоденального содержимого)

Желчь собирают в три стерильные пробирки или стерильные одноразовые контейнеры раздельно по порциям А, В, С согласно МУ 4.2.2039-05 и доставляют в лабораторию.

Проводят исследование каждой порции (А, В, С) отдельно или готовят смесь из трех порций. Пробы засевают:

на плотные дифференциально-диагностические среды (ВСА, Эндо, ЭМС или др.) в количестве 0,5 мл;

в пробирку (флакон) с питательным бульоном в соотношении 1:10. Нет необходимости засевать желчь на среды обогащения, т.к. желчь сама является хорошей питательной средой для возбудителей брюшного тифа и паратифов.

Засеянные среды вместе с остатками желчи инкубируют при 37 °С.

Через 18-24 ч просматривают посевы на плотных питательных средах (результаты роста на ВСА учитывают через 24 и 48 ч) и делают пересев подозрительных колоний на полиуглеводную среду.

Из питательного бульона производят высевы на плотные дифференциально-диагностические среды.

Из оставшейся желчи в случае отрицательного результата прямого посева делают повторные высевы на плотные дифференциально-диагностические среды через 18-24 ч и на 3, 5, 7 и 10 сутки.

Проводят идентификацию выросших микроорганизмов по культурально-морфологическим, ферментативным и серологическим свойствам.

12. Бактериологическое исследование материала из розеол

Бактериологическое исследование ("соскоб" с розеол) проводят при наличии хорошо выраженных розеол. Материал собирают асептически. Для этого участок кожи над розеолами обрабатывают 70%-м этиловым спиртом, затем протирают ватным тампоном, смоченным стерильным 0,9%-м раствором хлористого натрия и осушают стерильным тампоном.

Материал для исследования (тканевую жидкость) получают путем скарификации кожи над розеолой с помощью скальпеля. На поврежденную кожу наносят 1-2 капли желчного бульона или изотонического раствора хлорида натрия, смешивают с выступившей тканевой жидкостью и собирают пастеровской пипеткой или аналогичным одноразовым стерильным устройством в пробирку с одной из жидких сред обогащения (желчный бульон, среда Рапопорт и др.). В лаборатории посев выдерживают при 37 °С 18-24 ч с последующим высевом на плотные дифференциально-диагностические среды (Эндо, ЭМС, ВСА).



13. Бактериологическое исследование костного мозга

Хорошо известно, что при лабораторном подтверждении диагноза "брюшной тиф" наиболее результативным является бактериологическое исследование костного мозга (высеваемость возбудителя составляет 90-95%). Даже у пациентов с легкими и стертыми формами брюшного тифа, трудными для клинического распознавания, а также на фоне приема антимикробных препаратов, высеваемость миелокультур значительно выше, чем гемокультур.

Однако на практике бактериологическое исследование костного мозга проводится очень редко, только по особым клиническим показаниям, при отсутствии других лабораторных данных, подтверждающих диагноз брюшной тиф или паратиф, т.к. эта инвазивная процедура достаточно травматична. Забор материала для исследования проводят только в условиях стационара при наличии соответствующего специалиста.

Материал для бактериологического исследования (аспират) в количестве 0,50-0,75 мл получают асептически, путем проведения пункции грудины (рукоятки или тела) и засевают в пробирку с одной из сред обогащения (желчный бульон, среда Рапопорт и др.).

Если аспират невозможно засеять в среду обогащения сразу после пункции, его собирают в стерильную пробирку и немедленно направляют в лабораторию, где производится посев в среду обогащения. В лаборатории посевы инкубируют при 37 °С 18-24 ч с последующим высевом на плотные дифференциально-диагностические среды.

Дальнейшее исследование проводят, как при бактериологическом исследовании другого биологического материала.

14. Питательные среды и реактивы

Перечень питательных сред для выделения и идентификации возбудителей кишечных инфекций, в частности энтеробактерий, обширен и неуклонно расширяется. Выбор конкретных сред во многом обусловлен местными экономическими условиями и традициями. Тем не менее, при этом следует руководствоваться несколькими основными принципами.

14.1. В описании питательной среды должно быть указано, что она может быть использована не просто для выявления сальмонелл, а именно Salmonella Typhi и S. Paratyphi А, В и С.

14.2. Следует отдавать предпочтение сухим питательным средам известных производителей по сравнению со средами, непосредственно изготовляемыми в лаборатории.

14.3. Каждая партия питательной среды в лаборатории должна контролироваться с помощью тест-штаммов (внутренний контроль качества).

14.4. Для лабораторной диагностики тифо-паратифозных заболеваний и выявления бактерионосителей должны использоваться питательные среды и реагенты, разрешенные к применению на территории Российской Федерации в установленном порядке.

15. Методы изучения ферментативных свойств

В настоящее время для изучения ферментативной активности микроорганизмов семейства Enterobacteriaceae, включая возбудителей брюшного тифа и паратифов, разработаны, выпускаются и зарегистрированы различные диагностические тест-системы отечественного и зарубежного производства (от наиболее простых классических сред Гисса в пробирках и планшетах до автоматических анализаторов). Если тест-системы позволяют идентифицировать микроорганизм до уровня рода и выявлять особенности ферментативной активности штаммов, то они могут быть использованы для идентификации возбудителей брюшного тифа и паратифов. Методика работы с тест-системами подробно изложена в инструкциях по применению и их следует строго соблюдать.

16. Биологические свойства возбудителей

Возбудители брюшного тифа и паратифов А, В и С относятся к семейству Enterobacteriaceae, роду Salmonella, виду enterica, подвиду I (enterica) и обладают морфологическими, культуральными и ферментативными свойствами, характерными для данного подвида, вида, рода и семейства.

У представителей рода сальмонелл вида enterica исторически сложилась ситуация, когда для обозначения сероваров использовали не антигенную формулу, как у других бактерий, а названия болезней (человека или животных), страны, города или улицы, где они были выделены, и др. Ошибочно считать эти названия видовыми, т.к. они не имеют таксономического статуса. Тем не менее, названия наиболее часто встречающихся сероваров сальмонелл настолько привычны, что заменить их антигенными формулами практически нереально. Поэтому в современной схеме Кауфмана-Уайта при обозначении сальмонелл только вида enterica подвида I вместо видового обозначения используют название серовара, но пишут его с заглавной буквы.

Таким образом, полные названия возбудителей брюшного тифа и паратифов следующие:

Salmonella enterica subsp. enterica serovar Typhi;

Salmonella enterica subsp. enterica serovar Paratyphi A;

Salmonella enterica subsp. enterica serovar Paratyphi B;

Salmonella enterica subsp. enterica serovar Paratyphi С

В обычной практике возможно использование сокращенных вариантов названий:

Salmonella ser. Typhi или Salmonella Typhi или S. Typhi;

Salmonella ser. Paratyphi А или Salmonella Paratyphi А или S. Paratyphi A;

Salmonella ser. Paratyphi В или Salmonella Paratyphi В или S. Paratyphi B;

Salmonella ser. Paratyphi С или Salmonella Paratyphi С или S. Paratyphi С

16.1. Культурально-морфологические свойства

Подвижные грамотрицательные палочки не образуют спор и капсул, факультативные анаэробы хорошо растут на обычных питательных средах.

На простом питательном агаре - слегка выпуклые с ровным краем и гладкой поверхностью, влажные с блеском колонии более 1 мм.

На дифференциально-диагностических средах (содержащих лактозу как дифференцирующее вещество) - прозрачные, бесцветные или голубоватые, а иногда розоватые или цвета среды колонии (среды Эндо, Плоскирева, ЭМС и другие аналогичные среды).

На SS-arape - колонии цвета среды с черным центром.

На висмут-сульфитной среде - изолированные колонии S. Typhi, S. Paratyphi В - черные с характерным металлическим блеском, среда под колонией прокрашена в черный цвет. Колонии S. Paratyphi A - зеленоватые, светлые в цвет среды, нежные.

Штаммы S. Paratyphi В (возбудитель паратифа В) на мясопептонном агаре могут образовывать по периферии колоний приподнятый слизистый вал. Слизистый вал развивается на 2-5 сутки при хранении посевов при комнатной температуре. Этот признак не является постоянным и диагностическим.

16.2. Ферментативные свойства

Изучение ферментативных свойств проводится в отношении набора углеводов, многоатомных спиртов, аминокислот и других органических соединений, применяемых при идентификации и изучении сальмонелл и других энтеробактерий. Как правило, в практических лабораториях используют небольшое количество тестов, позволяющих идентифицировать основные роды, входящие в семейство кишечных бактерий. Характеристика ферментативных свойств сальмонелл, включая возбудителей брюшного тифа и паратифов А, В и С, представлена в табл.2.

Таблица 2

Ферментативные свойства возбудителей брюшного тифа и паратифов А, В, С

В этом случае вы можете повторить покупку документа с помощью кнопки справа.

Произошла ошибка

Платеж не был завершен из-за технической ошибки, денежные средства с вашего счета
списаны не были. Попробуйте подождать несколько минут и повторить платеж еще раз.

Субстрат

S. Paratyphi A

Глюкоза (газ)

Культуральный метод исследования представляет собой выделение из питательной среды бактерий определённого вида путём культивирования, с их последующей видовой идентификацией. Вид бактерий определяется с учётом их строения, культуральных и экологических данных, а также генетических, биохимических и биологических показателей.

Выведенные из питательной среды новые виды бактерий, свойства которых ещё не определены, называются чистой культурой. После окончательной идентификации их характеристик, бактерии, выведенные из определённого места и в определённое время, получают название штамм. При этом допускается незначительное различие в свойствах, месте или времени выделения штамма одного вида.

1 этап

А) Подготовительные мероприятия . Эта стадия включает в себя забор, хранение и транспортировку материала. Также, при необходимости, может проводиться его обработка, в зависимости от свойств изучаемых бактерий. Например, при обследовании материала на туберкулёз, для выявления кислоустойчивых микробактерий используются растворы щёлочи или кислоты.

Б) Обогащение . Данная стадия не является обязательной и проводится в том случае, если количества бактерий в исследуемом материале недостаточно для проведения полноценного исследования. Например, при выделении гемокультуры, исследуемую кровь помещают в среду в соотношении 1 к 10 и хранят в течение суток при температуре 37 о.

В) Микроскопия . Мазок исследуемого материала окрашивается и изучается под микроскопом - исследуется микрофлора, её свойства и количество. В дальнейшем из первичного мазка необходимо отдельно выделить все находящиеся в нём микроорганизмы.

Г) Создание отдельных колоний . На чашку, со специальной, селективной средой, наносится материал, для этого используют петлю или шпатель. Далее, устанавливают чашку вверх дном, для защиты колоний от конденсата, и хранят в термостате около 20 часов, поддерживая температуру 37 о.

Важно! Следует помнить, что в процессе исследования, необходимо придерживаться правил изоляции. С одой стороны, для защиты исследуемого материала и выводимых бактерий, и с другой стороны, для предотвращения заражения окружающих лиц и внешней среды.

Что касается условно-патогенных микроорганизмов, то при их выведении, имеет значение их количественная характеристика. В этом случае, проводится количественный посев, при котором проводят несколько стократных разведений материала в изотоническом растворе хлорида натрия. После, осуществляют посев в чашки Петри по 50 мкл.



2 этап

А) Изучение морфологических свойств колоний в средах и их микроскопия . Исследуются чашки и отмечаются свойства микроорганизмов, показатели их количества, темпы роста, а также отмечается наиболее подходящая питательная среда. Для изучения лучше всего выбрать колонии, располагающиеся ближе к центру, и если образуется несколько типов чистых культур, то изучить каждую в отдельности. Для изучения морфотипной чистоты культуры используют мазок колонии, его окрашивают (обычно используется метод по Граму или же любой другой) и тщательно микроскопируют.

Б) Накопление чистой культуры . Для этого колонии всех морфотипов рассаживают в отдельные пробирки с питательной средой и содержат в термостате при определённой температуре (для большинства микроорганизмов подходящей является температура 37 о, но в некоторых случаях может быть иной).

Питательной средой для накопления часто служит среда Клиглера. Она имеет «скошенный» вид в пробирках, где 2/3 её части в виде столбика, а 1/3 – скошенная поверхность, окрашена в светло-красный цвет. Состав:

· 0,1% глюкозы;

· 1% лактозы;

· Специальный реактив на сероводород;

· Феноловый красный индикатор.

3 этап

А)Уровень роста и чистоты культуры . В общем порядке, выведенная чистая культура имеет однородный рост и при микроскопическом рассмотрении клетки имеют одинаковое морфологическое и тинкториальное строение. Но встречаются некоторые виды бактерий с ярковыраженным плеофоризмом, при этом, встречаются клетки, имеющие различное морфологическое строение.

Если в качестве питательной среды использовалась среда Клиглера, то по изменению цвета столбика и скошенной части определяются биохимические характеристики. Например, если происходит разложение лактозы - желтеет скошенная часть, если глюкозы - пожелтение столбика; при продукции сероводорода происходит почернение из-за перехода сульфата в сульфид железа.



Как можно заметить на рисунке, среда Клиглера имеет свойство изменять свой цвет. Это происходит из-за того, что расщепление бактериями азотистых веществ и образование продуктов щёлочи происходит неоднородно как в столбике (анаэробные условия), так и на скошенной поверхности (аэробные условия).

В аэробной среде (скошенная поверхность) наблюдается более активное образование щёлочи, чем в анаэробной среде (столбик). Поэтому, когда происходит разложение глюкозы, кислота на скошенной поверхности без труда нейтрализуется. Но, при разложении лактозы, концентрация которой намного больше, кислоту не выходит нейтрализовать.

Что касается анаэробной среды, то щелочных продуктов генерируется крайне мало, поэтому здесь можно наблюдать, как глюкоза ферментируется.

E. coli – способствует разложению глюкозы и лактозы с образованием газов, не производит водород. Вызывает пожелтение всей среды с разрывами.

S. paratyphi – способствует разложению глюкозы с образованием газов, лактозоотрицателен. Скошенная часть цвет не изменяет, столбик – желтеет.

S. paratyphi A- не продуцирует сероводород.

S. paratyphi B – сероводород продуцируется (по ходу укола проявляется чёрный цвет).

S. typhi – глюкоза разлагается без газообразования, сероводород продуцируется, лактозоотритателен. Скошенная часть не изменяет цвета, столбик – желтеет и среда чернеет по ходу укола.

Shigella spp.- лактозоотрицателен, глюкозоположителен, сероводород не продуцируется. Столбик приобретает жёлтый оттенок, а скошенная часть остаётся прежней.

Б) Финальная идентификация чистой культуры и её реакция на антибиотики . На данном этапе изучаются биохимические, биологические, серологические и генетические свойства культуры.

В исследовательской практике не возникает необходимости в изучении полного спектра свойств микроорганизмов. Достаточно использовать простейшие тестирования для определения принадлежности микроорганизмов к тому или иному виду.

Културальн.метод-выдел-е и накопл-е чистой культуры бак-ий с ее послед. Идентиф-ей.Некот.бак-ии обл-ют а\б резистент-ю,поэтому бак.анализ может включать опр-е чув-ти выдел. Чист-к-ры к а\б

Особ-ть: многоэтап-ть. Минус- длит-ть.

Иссл.ж-ти: крови, мочи, спинномозговой жидкости, слизи из зева и носа, кала

Для выдел-я исп-ся плотн.пит среды.Этапы: выдел-е чист.культуры

Методы предв.класиф-ии:

1)морф.анализ бак.колоний и их хар-ка на спец\дифференциальн.средах

2)микроскоп-я окраш бак-ий

Для окончат.индетиф-ии бак-ий: изуч-е б\х акт-ти (биотипирование);

обнаруж-е бак.Аг(серотип-е)-1)р-ция агглютинация на стекле-пр. для энтеробак-ий

2)иммуннодифф-я в агаре (коринебак-ии дифтерии)

опр-е чув-ти к бактериофагам (фаготипир-е)

ИММУНОЛОГИЯ

Антигенраспознающие рецепторы лимфоцитов.

Сравнительная характеристика BCR и TCR

B клеточный рецептор (BCR)

T клеточный рецептор (TCR)

1. Строение

Мембранный IgM (mIgM) реже IgDмономер с дополнительным гидрофобным доменом для заякоривания на плазматической мембране (специфичность 2 паратопов совпадает со спецификой секретируемых антител)

Гетеродимер, состоит из 2 гликопептидных цепей – α и β (скреплены дисульфидной связью). Каждая состоит из 2 функционально различных участков – вариабельного иконстантного

Вариабельные участки (домены) обоих цепей образуют антигенсвязывающий центр TCR (паратоп CDR 1-3). Константные фрагменты α,β цепей обеспечивают фиксацию TCR на плазматической мембране и контакты с костимулирующими молекулами

2. Механизм усиления антигенного сигнала функционально зависит от

CD79a and CD79b

Цепи TCR экспрессируются на клеточной мембране только в сочетании с CD3

Даже после распознавания и связывания свободного антигена или MHC-белкового комплекса недостаточно сигнала для активации лимфоцитов. Необходимо взаимодействие с дополнительными молекулами. Их цитоплазматические фрагменты связаны с внутриклеточными энзимами (тирозинкиназами), активация которых запускает каскад, ведущий к экспрессии генов. Это индуцирует пролиферацию и дифференцировку наивных клеток в клетки эффекторы и клетки памяти

Рецепторный комплекс наивных лимфоцитов

BCR-комплекс= mIgM+CD79a+CD79b

ТCR-комплекс= TCR+CD3+CD4/8

3.Наличие секреторной формы

Да (свободный иммуноглобулин-пентамер)

Нет (не секретируется внеклеточно)

4. Механизм распознавания антигенов

(главная особенность)!!!

Распознают эпитопнапрямую

«без посредников»

Свободные эпитопыне воспринимаются

Принцип двойного распознавания

Только в комплексе с молекулой MHC на поверхности собственной АПК

Рестриктированы по HLA (см. ниже)

5. Изменение в ходе иммуногенеза

1. Смена изотипа рецепторов на IgG, IgA и IgE , в результате переключения класса секретируемых антител (т.е после короткого IgM-всплеска начинают доминировать IgG-антитела).

При повторном контакте с антигеном IgG-антитела преобладают с самого начала, так как рецепторы в клетках памяти с самого начала представлены, в основном, IgG-молекулами.

2. Повышается аффинность

1. Нет изменений, стабильный изотип

2. Аффинность постоянная

6. Сходство:

клонированы по чувствительности к Аг (распознаванию антигеннных эпитопов) Каждый лимфоцит располагает рецепторами одной специфичности (одного идиотипа, т.е. клонирован по V -доменам) т.е. отличаются у лимфоцитов, реагирующих на разные антигены

2. Понятие "клонированность" в иммунологии означает:

1. Способность каждого В/Т-лимфоцита реагировать на единственный антиген (эпитоп). 2. Способность каждого В/Т -лимфоцита реагировать на несколько эпитопов. 3. Избирательное связывание антигенных пептидов HLA-молекулами антигенпредставляющих клеток. 4. Специфичность (эпитопная комплементарность) антигенраспознающих рецепторов лимфоцитов. 5. Клоноспецифичность CD-фенотипа Т и В лимфоцитов.

Лимфоциты неоднородны по способности распознавать антигены и реагировать с ними. Более того, каждый лимфоцит и его потомство (клон) настроены на взаимодействие с единственным антигеном (точнее эпитопом). Иными словами, лимфоциты клонированы по чувствительности к антигенам, и именно это определяет избирательность (антигенную специфичность) иммунного ответа. Молекулярной основой клонированности являются особенности рецепторов, связывающих антигены: рецепторы каждого клона уникальны, реагируя только с одним антигеном. Это означает, что число клонов и клоноспецифических рецепторов должно быть огромным, соответствуя необозримому числу потенциальных антигенов. До встречи с антигеном каждый клон представлен небольшим числом зрелых покоящихся клеток (их называют «наивными»). Связываясь с комплементарными рецепторами, антиген обеспечивает активацию лимфоцита, действуя как селекционирующий фактор (селекция клона). Численность клона возрастает (экспансия клона), а входящие в его состав лимфоциты дифференцируются в клетки-эффекторы и клетки-памяти.

БАКТЕРИОЛОГИЯ

3. Признаки микобактерий туберкулеза, связанные с особенностями их клеточной стенки:

1. Кислотоустойчивость. 2. Медленная скорость размножения. 3. Резистентность к фагоцитам. 4. Устойчивость во внешней среде. 5. Высокая чувствительность к антибиотикам.

ТУБЕРКУЛЕЗ . род Micobacterium Родовой признак - кислото, спирто- и щелочеустойчивость. семейство Micobacteriaceae (сапрофиты) отдел Firmicutes. Неподвижные, аэробные гр+ палочковидные бактерии. Иногда образуют структуры, напоминающие мицелий, отсюда название. Для окраски применяют метод Циля-Нильсена. Болезнь вызывается 3 видами микобактерий: Mycobacterium tuberculosis - человеческий вид, Mycobacterium bovis - бычий вид, Mycobacterium africanum - промежуточный вид. [Возбудители микобактериальных антропонозов: M.leprae, m.tuberculosis. возбудитель микобактериального зооноза: M.bovis.] резервуар- больной, путь заражения- аэрогенный. Заболеваемость возрастает всвязи с низким уровнем гигиены, и т.д. Палочка Коха- тонкая, прямая или слегка изогнутая, склонны к ветвлению. Методом Циля-Нильсена окрашиваются в красный цвет,содерж кислотоуст гранулы(зерны Муха в цитопл).нужны факторы роста. В жидких средах синтезирует корд-фактор- фактор вирулентности. Синтезирует много никотиновой кислоты- ниацина(ниацин тест-метод дифферн микобакт). Липиды клеточной стенки: миколовые кислоты, корд-фактор, микозиды, сульфатиды. Поэтому она кислотоустойчива, "бронированное чудовище". Резистентность к фагоцитам, . устойчив во внешн среде. Факторы антифагоцитарной активности: липиды клеточной стенки, сидерофоры.

Патогенез: проникновение в альвеолы; размножение в альвеолярных макрофагах(корд-фактор ингиб фагосомно-лизасомн слияние); формирование неспецифической доиммунной гранулемы(вокруг инфициров клеток формир вал, из макрофаг); проникновение бакт в регионарные лимфатические узлы; индукция Т-клеточного иммунитета; Т-зависимая активация макрофагов(сначала Тхелп усилив биоцидность заражен макрофагов, потом Ткил уничт зараж макроф); формирование специфической постиммунной гранулемы. Заверш процесса-фиброз, кальцификация, формир латент инфекц, форм иммун к экзоген реинфициров-ю. [Инициация процесса- внутримакрофагальная инвазия. Механизмы: неагрессивный фагоцитоз, подавление образования фаголизисом, активное противостояние биотоксическим факторам фаголизосом, подавление функциональной кооперации между макрофагами и Т-лимфоцитами.] Первичн туберкулез-преимущ в детск возрасте проявление(+субфеб темп) - Первичный иммунный комплекс- очаг Гона. В гранулеме клетки Пирогова-Лнгханса, по периметру- лимфоциты, мононуклеары. Возможна реактивация эндогенн инф(вторич тубик) или экзоген реинфекция редко, развивается на фоне аллергии к туберкулопротеинам У лиц с ослабленным иммунитетом возможен диссеминированный туберкулез. Туберкулин- комплекс туберкулопротеинов (белковых дериватов), используется в аллергодиагностике. [Применяют адъювант Фройнда: пептидогликан+липиды клеточной стенки]. Туберкулопротеины обладают имунологически зависимой болезнетворностью, участвуют в реализации протективного иммунитета, используются в аллергодиагностике. Липиды клеточной стенки: антимакрофагальная активность, участвуют в индукции Т-клеточного иммунитета как адъюванты, определяют культуральные и тинкториальные особенности бактерий. Главная функция макрофагов в зоне неспецифической гранулемы: возбуждение реакций клоточного иммунитета. Постиммунная гранулема: возникает на фоне реакции гиперчувствительности замедленного типа к туберкулопротеинам, зона для функциональной кооперации между макрофагами и Т-эффекторами, основа для деструктивных реакций, основа для саногенеза(выздоровл), завершается бессимптомной персистенцией возбудителя. Деструкт процессы при туберкул определ-ся: имуннологически опосредованные эффекты микобакт АГ, цитокин-зависимая актифация макрофагов, аллергия к туберкулопротеинам. Иммунитет Противотуберкулезный иммунитет нестерильный инфекционный, [обусловлен наличием в организме L-форм микобактерий.]клеточный, антибактериалн

Лаб диагн. К обязательным методам обследования относится бактериоскопическое, бактериологическое исследование, биологическая проба, туберкулинодиагностика, основанная на определении повышенной чувствительности организма к туберкулину(очишен смесь белков возбуд туб-а). Чаще для выявления инфицирования и аллергических реакций ставят внутрикожную пробу Манту с очищенным туберкулином в стандартном разведеНИИ(до 14 лет). Флюрографию. Лечение-антибиотикотерап, хирур вмешат.

Специфическую профилактику проводят путем введения живой аттенуир вакцины - BCG(БЦЖ), внутрикожно на 5-й день после рождения ребенка. Проводят последующие ревакцинации7, 13лет.

ВИРУСОЛОГИЯ

4. Гемагглютинин ортомиксовирусов:

1. Инициирует взаимодействие вируса с клеткой. 2. Обретает активность после ограниченного протеолиза. 3. Фактор слияния. 4. Протективный антиген. 6. Имеется у всех типов (видов) рода Influenza.

Ортомиксовирусы Род Influenzavirus семейства orthomixoviridae(слизь, те сродство с муцином). Различают 3 типа-А,В,С.«-»РНК (8 сегментов,однонитевая это А и В, 7 у С) Подобная сегментарность позволяет двум вирусам при взаимодействии легко обмениваться генетической информацией и тем самым способствует высокой изменчивости вируса., спиральный нуклеокапсид(сост из рнк, нуклеопротеина(структур и регулят роль и типоспец аг) и протеина), суперкапсид-есть(=» сложные). Белки(ферменты) рнк-полимеразн комплекса: белок РВ1(транскриптаза), белок РВ2(эндонуклеаза), белок РА(репликаза). Далее идет М-белок(участв в сборке вирус частиц, типоспецеф АГ), далее билипидный слой(формир из мембраны клет хозяина, чувств к эфиру)из котор гликопротеинов шипы, сост из геммаглютинина(Н) и нейроминидазы(N(у типа С нет ее))

АГ-ая структура: внутренние - NP, белок-М, белки РНК полимераз комплекса. Наружные – Н(разновид 15, у чел:Н1-3) и N(9, у чел:N1,N2). Репликация ч/з иРНК.

(транскриптаза, эндонуклеаза, репликаза). Репл в ядре и синтез

Путем эндоцитоза чз Н в эндосому, там кислая среда меняет конформацию, обнажает пептиды(F-белки) вызывающие слияние вирусной и фаголизосомальной мембраны =>депротенизация

Дрейф, шифт. вирусемия. Ремантадин.

Признаки: -РНК(=>она не может без транскрипц выполнять функции иРНК, фрагментарна), оболочечн(к внутр относят М-белок,нуклеопрот,ферм полимер компл)., возбуд ОРЗ, нуклеокапсид спирал сим. Дел-е на виды: (А,В,С) АГ-особ-ти внутр белков(нуклеопротина). А, В, С различ по: эколог, масштаб АГ-изм-ти, спектр вирион ферм, степ Эпидем-ти(лидер по патаген – вирус типа А, тип В промежуточ, тип С-служит причин спорадическ заболев те единичн вспышки). Белки суперкапс: N, H. H: инициир взаимод вир с Кл(тк имеет сродство к сиалированным гликопептидам и гликолипидам благодаря этому вирионы закрепл на плазм мемб), актив-ся протеолизом(синтез в виде предшест кот способ реагир с рецепт клет, но не обеспеч слияния вирион оболо с клеточ мембр=> должен пройти огранич протеолиз, протеазы расщепл геммаглют на H1и H2и после допол конформации в кисл среде эндосом, Н2инициир пр слияния) , ф-р слияния(способ выходу нуклекапсида в цитоплазм:в кисл среде эндосом, обнажаются специал структ гемаглют(сайты слияния) кот возбужд объединен вирусн и клеточ мембран), протект-АГ(те к нему ат блокир вирус и подавл инфекцию), у всех видов Influenza., Нейраминидаза: протективн аг,фактор распространения(те расширяет зону инфекции путем отщепления сиаловой кислоты от гликолепидов и гликопептидов те по сути инактивирующий рецепторы для гемагглютинина), отлич эпитопн изменчив. АГ-шифт(это сдвиг, неожиданный, скочкообраз кот ведет к полной смене антиген профиля Н,N и появлен новых субтипов): только тип А, экологич детерминир-н(привязка вирусов к респират тракту), генетич детерменир(зависит от генетич рекомбин генов при одновр заражении клет нескол штаммами),смена субтипов пов белк вириона, возн пандемии(Н1N1(это испанка)H3N2(вирус Гонконг) . Дрейф(медленн частичное обнавление с помощ точечн мутаций Н,N-эпитопов при сохранен антиген родства с поверх АГ родительск штамма, определяет штаммовые особенности внутри субтипа, дает начало штаммом с повышен эпидем проходимостью) эпид. Трудно вакцину получ: АГ- изм-ть, дрейф.

Экзаменационный билет 58.

ОБЩАЯ МИКРОБИОЛОГИЯ

Понятие о специфической профилактике инфекционных заболеваний. Иммунологические основы вакцинопрофилактики. Работы Э Дженнера и Л.Пастера. Типы вакцин (убитые, живые, субъединичные; моно- и ассоциированные). Рекомбинантные вакцины, принцип получения. Конъюгированные вакцины. Мукозальные вакцины.

Иммунитет бывает пассивный(1.естествен приобрет-после инфекции и 2.искуств приобрет-после вакцины) и активный(1.естеств приобрет-АТ мамы через молоко или плаценту и 2.искусст приобрет-серотерапия). Неспецифическая проф-ка направлена на избежание зарадения, а специфическая напрвлена против конкрерт возбуд-й. Сущность вакцинации-сформировать память об АГ,что обеспечит быстрый иммун ответ. Для вакцины нужны только протективные АГ(т.е. которые выз-т выработку АТ)

ИСТОРИЯ:в 1778г в Дженнер доказал,что прививка «коровьей оспы» защ-т от зар-я натуральной оспой. Это был продукт чистого эксперимента. Это дата рождения вакцинологии. Сам термин «вакцина» дал Пастер. Он в 1881 «осознанно» ослабил вирулентноть бакт,культивируя их в неблагопр усл. Он приготовил первые вакцины против куринной холеры и сибирской язвы. В 885 он получил вакцины против беш-ва(позже оказадась,что это была убитая вакцины)

Типы вакцин:

1. ЖИВЫЕ- вводят ослабленных(аттенуированных) бакт. Осл-т физич,химич способами. «+»-высок иммуногенность и длительность эфф-та(тк ослабл бакт способны разм-ся в орг-ме,персистировать «-»- повыш реактогенность,нестабильность,ничтожная. Но вероятность реверсии вирулентного фенотипа. Пример:BCG

2. УБИТЫЕ-сод-т инактивир бакт,прост,грибы или вирионы. Их недостатки и достоинства противоположны живым вакцинам. Нужно чаще проводить. Пример: п-в гриппа,брюш тифа

3.СУБЪЕДИНИЧНЫЕ–состоят из очищенных протективных АГ. Реактогенность минимальна. О изкая имуногенность,которую усил с пом адьювантов

1) Конъюгированные- исп-т для созд-я имм-та против Т-независ АГ. Т-независ АГ не ост-т памяти.

2)Анатоксины-обезвреженные токсины бактерий. Проблема связана с тем,что моноинтокцикация редко встречаеться. Экзотоксины обрабатывают формалином и те теряют токсич св-ва, но сох-т иммун-ть. Они не предох-т от бактерионосительства. Пример: столбячий анатоксин

3)Рекомбинантные-это рекомбинантные молекулы ДНК,сделан на основе бактер плазмид,в кото встроены гены протективных АГ. Такие ДНК синт-т АГ, индуцирующ гуморальн и клечный имм.

1)Голые-спольз свободн плазмиды или те,что сорбированы на искуст носителях. Они безопасны. Пример: пртив гепатита В

2)Векторные-для доставки применяют ослабл бакт

4.МУКОЗАЛЬНЫЕ-создаются специально для имм-та слизист оболочек против инфекций респират,кишеч и полового трактов. Помисо д-я на месте они влияют и на общий имм-т. Их обязательно сопр-т адьюванты. Но их ведрение в практику идет оч медленно



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения