Подпишись и читай
самые интересные
статьи первым!

Хромосомная поломка. Нарушение хромосомное

Солнце. Источник жизни на Земле, центр и основа нашего мироздания, вечно пылающий в небе огненный шар божества. Как могли бы мы пройти мимо него и не написать каких-нибудь гадостей?

Гай Серегин

Что это вообще такое?

При всей нашей патриотичности, приходится признать, что звезда по имени Солнце - объект достаточно скромных масштабов по вселенским понятиям. Существуют звезды в 150 раз больше Солнца, которое весит всего-то 2x1027 тонн (хотя это ровно 99,8% веса всей нашей Солнечной системы, включая планеты, их спутники, астероиды и нас с тобой). С другой стороны, если бы у нас было крутое, самое тяжелое в мире солнце, то нам было бы негде жить, так как рядом с такими гигантами просто не образуются планеты: мешает чудовищная гравитация.

Как ты знаешь, мы непрестанно вертимся вокруг Солнца, но оно тоже не стоит на месте, а несется по кольцевой вокруг центра Млечного Пути, и как раз на данный момент оно решительно направляется из Рукава Ориона в Рукав Стрельца. В следующий раз, когда гаишник начнет спрашивать тебя, с какой скоростью ты двигался, сообщи ему, что вся наша планета вместе с Солнцем летит к чертям собачьим со скоростью 217 км в секунду, при этом вращаясь вокруг Солнца со скоростью 30 км в секунду, да еще и крутясь вокруг себя со скоростью 1000 км в час. Так что пусть он сам все это высчитывает.

Состоит Солнце преимущественно из водорода (примерно 73%) и гелия (примерно 25%), оставшиеся 2% приходятся на долю всякой мелочи типа хрома, никеля, железа, кальция, азота, серы, магния и т.д. Но водорода становится все меньше, так как внутри Солнца идет термоядерная реакция, превращающая его в гелий. При этом светило каждую секунду перерабатывает 4 миллиона тонн вещества, выделяя лучистую энергию. Мы называем ее солнечным светом и сушим под ней мокрое белье.

Так что пока у нас с Солнцем все обстоит хорошо. Но так, увы, будет не всегда.

Жизнь солнца

Примерно 4,59 миллиарда лет назад взорвалась одна сверхновая звезда или несколько сверхновых, расположенных по соседству.

Куча разлетевшейся от этого взрыва звездной пыли под действием сил гравитации сжалась в одну не самую большую, но симпатичную звезду, вокруг которой сформировалось еще несколько планет. Одна из планет оказалась столь удачно расположенной и ладно скроенной, что на ней даже зародилась жизнь.

Прошло 4,5 миллиарда лет. Солнце светит немножко ярче, чем вначале, и слегка уменьшилось в объеме. Жизнь на Земле начала интересоваться тем, долго ли еще эта халява продлится.

Прошло еще 3 миллиарда лет. Водород в ядре выгорает, оно становится меньше, зато внешняя оболочка Солнца расширяется. На Земле испаряется вся вода и выжигается атмосфера, а ее обитатели давно удрали в более дружелюбные уголки Вселенной.

Солнцу 8 миллиардов лет. Температура в его ядре достигла 100 миллионов градусов, из гелия начинает формироваться углерод и кислород, а само Солнце растет и превращается в красный гигант, края которого находятся там, где когда-то была планета Земля. Ее выжженные останки давно съедены раздувшимся Солнцем*.

« Люди, возможно, позволили бы этому произойти, но, к счастью, их цивилизация давно уступила место разумным бородавочникам. Они не дали голубой колыбели свинства погибнуть, телепортировав ее в спокойное место »

Еще через миллиард лет выгорающее ядро красного гиганта станет таким маленьким, что будет не в силах удерживать свою расползающуюся оболочку. Она оторвется и, остывая, превратится в планетарную туманность - облако красиво переливающегося газа. Солнце же будет висеть в пространстве маленьким белым карликом еще сотни миллиардов лет.

А потом атомы внут­ри бывшего Солнца замедлятся настолько, что оно совершенно остынет и превратится в черный карлик.

Боги солнца

Гелиос (Греция)

Греки, обитатели обильных дождями гор и рощ, не слишком почтительно относились к солнцу, прекрасно зная, что тучи и облака способны убрать его с небосклона в любой момент. Поэтому греческий Гелиос - это смиренный трудяга, которому некогда вмешиваться в инт­риги других богов: с утра он запрягает коней и весь день гонит их по небесному своду с востока на запад. Лишь один раз он позволил себе отдох­нуть, уступив просьбам своего сына Фаэтона. Гелиос отдал парнишке пылающую колесницу, и, как любой подросток, дорвавшийся до ключей от папиной машины, Фаэтон, вне себя от счастья, принялся рулить, не соблюдая никаких правил движения. Он не справился с управлением, подпалил небо, перепугал созвездия и чуть не сжег Землю, так что Зевсу даже пришлось прибить несчастного молнией, чтобы остановить мировой пожар. Сегодня некоторые популяризаторы от астрономии высказывают гипотезы, что гибель Фаэтона - дошедший до нас через тысячелетия рассказ о некоем космическом катаклизме. Например, о падении гигантского метеорита.

Тонатиу (Мексика)

Бог солнца Тонатиу, молодой краснокожий человек с рыжими волосами, управлял как мирозданием, так и другими богами, поддерживая в них силу и молодость. А для этого ему требовалась человеческая кровь. И жрецы Тонатиу ежедневно прокалывали себе иглами уши, кончик языка, пенис и подушечки пальцев, чтобы обмазать кровью его изображения. Но, конечно, на такой скромной диете Тонатиу бы долго не продержался. Поэтому по праздникам его досыта кормили военнопленными и преступниками, которых сотнями притаскивали к алтарю. Жрецы рассекали жертве грудь, вырывали сердце и поднимали над головой, демонстрируя солнцу, какую отличную штуку ему дарят.

Ярило (Славяне)

Современные гей-славяне и прочая вдохновенная национальным величием публика любит мероприятия в стиле «Вятичи празднуют день Ярилы - бога солнца». Однако вся прелесть заключается в том, что славянский языческий пантеон канул в веках, оставив катастрофически мало сведений о том, кто там обретался. Над созданием этих образов трудились в основном салонные литераторы - всякие Островские и Гильфердинги. Именно их стараниями воссозданы и во многом придуманы всевозможные былины и сказания. Нет никаких реальных древних источников, связывающих Ярилу (культ которого, вероятно, был распространен в Киеве) с солнцем. Островский, впервые присвоивший ему этот титул в своей «Снегурочке», вероятно, исходил из аналогии «ярый - яркий», не слишком задумавшись о том, что вообще-то основное значение этого слова было «сильный». Славянским богом, который, видимо, как-то был связан с солнцем, специалисты называют менее известного Даждьбога.

Ра (Египет)

У египтян, живших в местности, где солнце практически постоянно висит над головой, не скрываемое никакими облачками, и зорко следит за тем, как люди машут мотыгой, не было сомнений в том, что солнце - важнейшая штука мироздания, верховный бог и правитель всего и вся. Во всех регионах Египта поклонялись прежде всего солнцу, но под разными именами: Атум-Ра, Амон-Ра, Хнум-Ра. И даже солнцу не в антропоморфном виде, а в виде простого солнечного диска - Атону. Да и прочие боги Египта всячески примазывались к высшей власти, тоже наделяя себя солнечными титулами. Например, Гор также именовался иногда Гор-Ра. Ра в ладье плывет по небу, он вездесущ, всеведущ и всезнающ. Другие боги - лишь его дети. К людям он относится терпимо и наиболее приличных из них после смерти забирает к себе в перевернутый небесный мир.

Лечит и калечит

При всей любви к солнцу приходится признать, что оно хорошо все же в умеренных дозах. И ночные бледнокожие жители, выползающие на улицу лишь в час открытия ночных клубов, и завсегдатаи пляжей, любящие понежиться под солнышком в зените, одинаково рискуют обзавестись различными неприятными заболеваниями.

Много солнца

Меланома

Или рак кожи. Если тебе случалось загорать до ожогов, а когда-то маленькие родинки разрослись, увеличились, начали чесаться или поднимаются над кожей больше чем на 1 мм, есть смысл показать их врачу.

Преждевременное старение

Морщины и пигментные пятна, идущие мудрым старцам, глупо смотрятся на молодежи. Они говорят не о жизненном опыте, а о том, что не все умеют пользоваться солнцезащитными кремами.

Световая крапивница

На солнце у некоторых граждан может развиться аллергия, выражающаяся в зудящей красной сыпи по всему телу. Риск обзавестись такой оригинальной, но неудобной особенностью выше всего у активных любителей позагорать.

Солнечный удар

В отличие от теплового удара, солнечный можно схлопотать, даже не чувствуя, что тебе особо жарко. Нагрев головы прямыми лучами солнца вызывает расширение кровеносных сосудов мозга,что может привести к отеку мозга. Носи панамку.

Красная потница

Потовые железы испаряют пот, но от жары кровеносные сосуды расширяются, кожа отекает и часть желез оказывается зажатой и нефункционирующей. Невышедший пот скапливается под кожей в виде заполненных всякой дрянью пузырьков.

* Примечание Phacochoerus"a Фунтика: « Кстати, лучше сократить время своих солнечных ванн до 15-20 минут в день при следующих болезнях: варикоз, гипертония, диабет, туберкулез, болезни щитовидной железы, недостаточность кровообращения, неврастения. У их обладателей происходит ерунда с теплообменом, так что дополнительно его нагружать не стоит »

Коперник-плагиатор

Идея Коперника, что Земля вращается вокруг Солнца, а не наоборот, восприняли в XVI веке как опасную новинку. Однако это знание преподавалось еще древними индийцами за две тысячи лет до того, а древний грек Аристарх Самосский описал весьма точно устройство Солнечной системы.

Мало солнца

Рахит

Дефицитный витамин D, необходимый для строения тела, мы вырабатываем сами - под воздействием ультрафиолета. Дети подземелья рискуют вырасти кривоногими и хилыми, даже если кормить их на убой.

Остеопороз

Ломкость и хрупкость костей с последующим медленным их заживанием - это еще одно свидетельство того, что кто-то редко грел их на солнышке.

Депрессия

Но и взрослые люди активно реагируют на недостаток ультрафиолета: их дни становятся серыми, настроение пасмурным, а впереди у них - полный мрак. А все потому, что ультрафиолет участвует в превращении аминокислоты триптофан (мясо, арахис) в гормон радости серотонин. Нет света - нет радости.

Болезнь Паркинсона

Половое бессилие

Сдержанность многих народов Заполярья, у женщин которых по полгода может не быть менструации, а у мужчин - желания, вызывается отсутствием солнца во время полярной ночи.

Консервное хозяйство

Когда очередной пессимист начнет выклевывать твой мозг рассказами о том, как скоро человечество исчерпает запасы топлива и впадет в ничтожество, - укажи пальцем вверх. Там над нами болтается неисчерпаемый и неиссякаемый источник энергии, который ежесекундно растрачивает миллионы тонн топлива в никуда. Нам остается только придумать сачок побольше, которым можно было бы выгребать эту энергию, которую мы пока потребляем в виде консервов: нефти, угля и газа.

Солярные символы

С изобретением колеса стало понятно, как на самом деле работает солнце. Конечно же, это просто видимое нам сверкающее колесо огромной колесницы.

Солярная спираль

Такое изображение светила встречается и на древнегреческих амфорах, и на северорусских прялках. Символ подразумевает то, что солнце - это не просто круг, а круг вращающийся, живой и вечный.

Крест-дерево

Именно так, кривенько, но с любовью, изображали солнце древние племена от Африки до Приэльбрусья. Ветки дерева и оленьи рога символизировали одновременно идею вечной жизни и мужественности.

Солнечный круг, небо вокруг

Современный ребенок, если попросить его нарисовать солнышко, обычно старательно изображает круг с отделенными от него лучиками более-менее равной длины. На самом деле такой вариант солнечного символа - весьма современный, основанный на приблизительном представлении об устройстве солнца и усвоенный младенцами в основном из мультиков и детских книжек. В древности же люди воспринимали внешний вид солнца иначе.

Круг с лепестками

Наиболее близок к современному представлению о том, как правильно рисовать солнце. Изображение солнца-цветка - уже скорее дань любви к декоративности, чем желание привлечь магическим действием - рисованием - на свою сторону могучую силу светила.

Свастика или коловрат

Древний индийский символ солнца, изрядно испоганенный XX веком, имеет в своей основе игрушку-вертушку, которая при движении зрительно превращается в поблескивающий круг.

Сейчас вылетит вспышка

«Вспышки на Солнце образуются в группах темных пятен, там, где есть сильные магнитные поля разных полярностей, - рассказывает Игорь Федорович Никулин, старший научный сотрудник отдела физики Солнца Государственного астрономического института имени П.К. Штернберга. - Тесное соседство пятен с разными полярностями и есть сигнал того, что вскоре произойдет вспышка, то есть сильный выброс энергии. Мощные вспышки были уже не один раз, и воздействие на Землю зависит не только от мощности, но и от положения вспышки на Солнце. 4 нояб­ря 2003 года была зафиксирована самая большая вспышка за всю историю наблюдений. Но она произошла на западном лимбе Солнца, поэтому выброс прошел мимо Земли. Наиболее опасны в этом отношении всплески магнитной активности в центральной и западной части Солнца.

Если же солнечный шторм все-таки произойдет, как предсказывают американские ученые, то электричество не отключится. Сильно пострадать от этого явления могут только спутники. Но инженеры научились бороться с этим. Если на время бури спутник отключить, то потом, после включения, он сможет возобновить свою работу без повреждений».

С 28 августа по 2 сентября 1859 года произошла первая вспышка на Солнце, которую можно было наблюдать невооруженным глазом. В этот день отключились телеграфы в США и Европе, случились многочисленные пожары, а на Гавайях, в Мексике, Италии и на Кубе было замечено полярное сияние.

В 1956 году после одной из самых сильных вспышек полярное сияние можно было видеть даже над Черным морем.

13 марта 1989 года в Квебеке (Канада) во время магнитной бури отключилась электростанция, 6 миллионов людей осталось без света на 9 часов. Этот же шторм вызвал полярное сияние в Техасе.

В августе 1989 года магнитная буря повредила микрочипы и привела к зависанию компьютеров на бирже в Торонто. С тех пор компании заботятся о защите микрочипов от внешних воздействий.

Царь-солнце

Скарабей

Египтяне почитали это насекомое, потому что верили: шар он катает, подражая богу Ра в его работе, а посему Ра ему симпатизирует и не допустит, чтобы скарабея обижали всякие ноги в сандалиях.

В XIV веке до н. э. фараон Аменхотеп IV так мощно ощутил величие солнца, что принял имя Эхнатон («солнцеугодный»), практически запретил других богов и перетащил свою столицу из Фив в пустыню, создав там «город солнца» - Ахетатон, где срочно начал строить памятники, обелиски и храмы в честь светила. Каждое утро в пять часов Эхнатон вместе с женой Нефертити объезжал улицы строящегося города, демонстрируя, что солнце, полностью согласное с действиями фараона, сейчас взойдет и все будет замечательно. Весь остальной день фараона также был посвящен большей частью молитвам и сочинению хвалебных солнечных од. Войны он прекратил, экономику развалил, со всеми соседями перессорился - и все это ему было безразлично, так как Эхнатон свято верил, что он избранник Солнца и его возлюбленный сын. Лишь раз эта вера была поколеблена - когда умерла одна из его четырех маленьких и, видимо, очень любимых дочек. Фараон был изумлен и не мог понять, почему солнце пожелало так его наказать. В конце концов он решил, что все дело в неправильной жене, разъехался с Нефертити и принялся бодро рулить солнцем с новой супругой. После смерти Эхнатона народ Египта облегченно вздохнул, вернулся из хорошо прожаренной солнечной столицы в родные места и старательно забыл единобожный культ Атона.

Другие солнечные властители

Людовик, король-солнце

Луи XIV все-таки не был древним египтянином, поэтому ни на какие солнечные регалии не претендовал. Появилось же это прозвище после того, как король в 12 лет принял участие в придворном балете-аллегории, в котором исполнил роли Восходящего Солнца и солнечного бога Аполлона.

Акихито

Династия японских императоров, к которой принадлежит и современный правитель Акихито, считает своей прародительницей богиню солнца Аматэрасу - редкий случай, когда солнцем заведует божество женского пола.

Хромосомные мутации (по-другому их называют аберрациями, перестройками) - это непредсказуемые изменения в структуре хромосом. Чаще всего они вызываются проблемами, возникающими в процессе деления клетки. Воздействие инициирующих факторов среды - это еще одна возможная причина хромосомных мутаций. Давайте же разберемся, какими могут быть проявления такого рода изменений в структуре хромосом и какие последствия они несут для клетки и всего организма.

Мутации. Общие положения

В биологии мутация определяется как стойкое изменение структуры генетического материала. Что значит «стойкое»? Оно передается по наследству потомкам организма, имеющего мутантную ДНК. Происходит это следующим образом. Одна клетка получает неправильную ДНК. Она делится, а две дочерние копируют ее строение полностью, то есть они тоже содержат измененный генетический материал. Далее таких клеток становится все больше, и, если организм переходит к размножению, его потомки получают сходный мутантный генотип.

Мутации обычно не проходят бесследно. Некоторые из них меняют организм настолько, что результатом этих изменений становится летальный исход. Часть из них заставляет организм функционировать по-новому, снижая его способности к адаптации и приводя к серьезным патологиям. И очень малое количество мутаций приносит организму пользу, повышая тем самым его способность адаптироваться к условиям окружающей среды.

Выделяют мутации генные, хромосомные и геномные. Такая классификация основывается на различиях, происходящих в разных структурах генетического материала. Хромосомные мутации, таким образом, затрагивают строение хромосом, генные - последовательность нуклеотидов в генах, а геномные вносят изменения в геном всего организма, прибавляя или отнимая целый набор хромосом.

Поговорим о хромосомных мутациях более подробно.

Какими могут быть хромосомные перестройки?

В зависимости от того, как локализованы происходящие изменения, различают следующие типы хромосомных мутаций.

  1. Внутрихромосомные - преобразование генетического материала в пределах одной хромосомы.
  2. Межхромосомные - перестройки, в результате которых две негомологичные хромосомы обмениваются своими участками. Негомологичные хромосомы содержат разные гены и не встречаются в процессе мейоза.

Каждому из этих типов аберраций соответствуют некоторые виды хромосомных мутаций.

Делеции

Делеция - это отделение или выпадение какого-либо участка хромосомы. Несложно догадаться, что этот тип мутации относится к внутрихромосомным.

Если отделяется крайний участок хромосомы, то делеция называется концевой. Если же происходит выпадение генетического материала ближе к центру хромосомы, такая делеция именуется интерстициальной.

Этот тип мутаций может оказывать влияние на жизнеспособность организма. К примеру, выпадение участка хромосомы, кодирующего определенный ген, обеспечивает человеку невосприимчивость к вирусу иммунодефицита. Эта адаптационная мутация возникла примерно 2000 лет назад и некоторым людям, заболевшим СПИДом, удалось выжить только благодаря тому, что им повезло иметь хромосомы с измененной структурой.

Дупликации

Еще один вид внутрихромосомных мутаций - дупликации. Это копирование участка хромосомы, которое происходит вследствие ошибки при так называемом перекресте, или кроссинговере в процессе деления клетки.

Скопированный таким образом участок может сохранять свое положение, поворачиваться на 180°, или даже повторяться несколько раз, и тогда такая мутация называется амплификацией.

У растений количество генетического материала может увеличиваться именно путем многократных дупликаций. В таком случае обычно меняются способности целого вида к адаптации, а это значит, что такие мутации имеют большое эволюционное значение.

Инверсии

Также относятся к внутрихромосомным мутациям. Инверсия - это поворот определенного участка хромосомы на 180°.

Перевернутая в результате инверсии часть хромосомы может находиться по одну сторону от центромеры (парацентрическая инверсия) или по разные ее стороны (перицентрическая). Центромера - это так называемая область первичной перетяжки хромосомы.

Обычно инверсии не оказывают влияния на внешние признаки организма и не приводят к патологиям. Существует, однако, предположение, что у женщин с инверсией определенного участка девятой хромосомы вероятность выкидыша при беременности возрастает на 30 %.

Транслокации

Транслокация - это перемещение участка одной хромосомы на другую. Эти мутации относятся к типу межхромосомных. Выделяют два вида транслокаций.

  1. Реципрокные - это обмен двух хромосом определенными участками.
  2. Робертсоновские - слияние двух хромосом с коротким плечом (акроцентрических). В процессе робертсоновской транслокации короткие участки обеих хромосом утрачиваются.

Реципрокные транслокации приводят у людей к проблемам с деторождением. Иногда такие мутации становятся причиной невынашивания беременности или ведут к появлению на свет детей с врожденными патологиями развития.

Робертсоновские транслокации достаточно часто встречаются у человека. В частности, если транслокация происходит с участием хромосомы 21, у плода развивается синдром Дауна, одна из самых часто регистрируемых врожденных патологий.

Изохромосомы

Изохромосомы - это хромосомы, потерявшие одно плечо, но при этом заменившие его на точную копию другого своего плеча. То есть по сути такой процесс можно считать делецией и инверсией в одном флаконе. В очень редких случаях такие хромосомы имеют две центромеры.

Изохромосомы присутствуют в генотипе женщин, страдающих синдромом Шерешевского - Тернера.

Все описанные выше виды хромосомных мутаций присущи различным живым организмам, в том числе и человеку. Как же они проявляются?

Хромосомные мутации. Примеры

Мутации могут происходить в половых хромосомах и в аутосомах (всех остальных парных хромосомах клетки). Если мутагенез затрагивает половые хромосомы, последствия для организма, как правило, оказываются тяжелыми. Возникают врожденные патологии, которые затрагивают умственное развитие индивида и обычно выражаются в изменениях фенотипа. То есть внешне мутантные организмы отличаются от нормальных.

Геномные и хромосомные мутации чаще возникают у растений. Однако встречаются они и у животных, и у человека. Хромосомные мутации, примеры которых мы рассмотрим ниже, проявляются в возникновении тяжелых наследственных патологий. Это синдром Вольфа-Хиршхорна, синдром «кошачьего крика», болезнь частичной трисомии по короткому плечу хромосомы 9, а также некоторые другие.

Синдром «кошачьего крика»

Это заболевание было открыто в 1963 году. Возникает оно из-за частичной моносомии по короткому плечу хромосомы 5, обусловленной делецией. Один из 45 000 детей рождается с этим синдромом.

Почему это заболевание получило такое название? Дети, страдающие этой болезнью, имеют характерный плач, который напоминает кошачье мяуканье.

При делеции короткого плеча пятой хромосомы могут утрачиваться разные его участки. Клинические проявления заболевания напрямую зависят от того, какие гены были утеряны в ходе этой мутации.

Строение гортани изменяется у всех больных, а значит «кошачий крик» характерен всем без исключения. У большей части страдающих этим синдромом отмечается изменение строения черепа: уменьшение мозгового отдела, лунообразная форма лица. Ушные раковины при синдроме «кошачьего крика» обычно расположены низко. Иногда у больных отмечаются врожденные патологии сердца или других органов. Характерным признаком также становится умственная отсталость.

Обычно больные с этим синдромом умирают в раннем детстве, лишь 10% из них доживает до десятилетнего возраста. Однако зафиксированы и случаи долгожительства при синдроме "кошачьего крика" - до 50 лет.

Синдром Вольфа-Хиршхорна

Этот синдром встречается значительно реже - 1 случай на 100 000 рождений. Обусловлен он делецией одного из сегментов короткого плеча четвертой хромосомы.

Проявления этого заболевания разнообразны: задержка развития физической и психической сферы, микроцефалия, характерная клювовидная форма носа, косоглазие, расщелины неба или верхней губы, маленький рот, пороки внутренних органов.

Как и многие другие хромосомные мутации человека, болезнь Вольфа-Хиршхорна относится к категории полулетальных. Это значит, что жизнеспособность организма при такой болезни существенно снижена. Дети с диагностированным синдромом Вольфа-Хиршхорна обычно не доживают до 1 года, однако зафиксирован один случай, когда больной прожил 26 лет.

Синдром частичной трисомии по короткому плечу хромосомы 9

Возникает это заболевание по причине несбалансированных дупликаций в девятой хромосоме, в результате чего генетического материала в этой хромосоме становится больше. Всего известно более 200 случаев таких мутаций у человека.

Клиническая картина описывается задержкой физического развития, легкой умственной отсталостью, характерным выражением лица. Пороки сердца обнаруживаются у четвертой части всех больных.

При синдроме частичной трисомии короткого плеча хромосомы 9 прогноз все же относительно благоприятный: большая часть больных доживают до пожилого возраста.

Другие синдромы

Иногда даже на очень маленьких участках ДНК происходят хромосомные мутации. Болезни в таких случаях обычно обусловлены дупликациями или делециями, и их называют соответственно микродупликационными или микроделеционными.

Самым распространенным таким синдромом считается болезнь Прадера-Вилли. Возникает она из-за микроделеции участка хромосомы 15. Что интересно, эта хромосома должна быть обязательно получена организмом от отца. В результате микроделеции затронутыми оказываются 12 генов. У больных с этим синдромом отмечаются умственная отсталость, ожирение, а также у них обычно маленькие стопы и кисти рук.

Еще одним примером таких хромосомных болезней может служить синдром Сотоса. Происходит микроделеция на участке длинного плеча хромосомы 5. Клиническая картина этого наследственного заболевания характеризуется быстрым ростом, увеличением в размерах кистей рук и стоп, наличием выпуклого лба, некоторой задержкой психического развития. Частота встречаемости этого синдрома не установлена.

Хромосомные мутации, точнее, микроделеции на участках 13 и 15 хромосом, вызывают соответственно опухоль Вильмса и ретинбластому. Опухоль Вильмса - это рак почек, который возникает преимущественно у детей. Ретинобластома - это злокачественная опухоль сетчатки, которая также встречается у детей. Эти заболевания лечатся, если диагностика их проведена на ранних стадиях. В некоторых случаях врачи прибегают к оеративному вмешательству.

Современная медицина избавляет от многих болезней, но вылечить или хотя бы предотвратить хромосомные мутации пока нельзя. Их можно только выявить в начале внутриутробного развития плода. Однако генная инженерия не стоит на месте. Быть может, в скором времени способ предотвращения болезней, вызываемых хромосомными мутациями, будет найден.

Все наследственные болезни вызываются мутациями — нарушениями генетического материала.

Хромосомные болезни — заболевания, вызванные хромосомным и геномными и

Изменения, вызывающие заболевания:

  • выпадение участка хромосомы;
  • добавление новых участков или даже целых хромосом

Как мы знаем, есть хромосомы неполовые — .

Давайте рассмотрим аутосомные (хромосомные) заболевания — те, которые передаются по наследству и не зависят от пола

Делеции - хромосомные перестройки, при которых происходит потеря участка хромосомы. Делеция может быть следствием разрыва хромосомы или результатом неравного кроссинговера.

1. Есть часто встречающаяся делеция 5-ой хромосомы

(синдром кошачьего крика)

Заболевание достаточно редкое, его симптомы:

  • отставание в развитии;
  • мышечная дистрофия;
  • кошачеподобное лицо (расставленные глаза);
  • нарушение в строении гортани, поэтому у ребенка получается плач, схожий с кошачьим мяуканьем (отсюда и название)

2. Делеция 3-й хромосомы

Такие организмы не жизнеспособны.

Получается, что перестройка или выпадение даже одного небольшого участка хромосомы приводит к довольно значительным осложнениям.

Делеция 21-й хромосомы

(белокровие, лейкоз, анемия)

Это хромосомное заболевание характеризуется тем, что образуется либо мало эритроцитов, либо они имеют форму серпа (серповидно-клеточная анемия). Т.к. красные кровяные клетки отвечают за транспорт кислорода, то заболевание тяжелое.

3. Трисомия по 21-й хромосоме

(синдром Дауна)

В кариотипе такого организма не две, а три 21-х хромосом.

Это очень распространенное хромосомное заболевание. Частота рождения — 1: 500 (0.2%).

Симптомы:

1) монголойдный тип лица;

2) укороченные конечности;

3) психическая отсталость (многие ученые спорят с этим утверждением. У людей с синдромом Дауна скорее «другая» психическая активность, чем у большинства нормальных людей);

Причины трисомии:

Как правило, каждая клетка человека содержит 23 пары разных хромосом. Каждая хромосома несет гены, которые необходимы для правильного развития и поддержания нашего тела. В концепции, человек наследует 23 хромосомы от матери (через яйцеклетку) и 23 хромосомы от отца (через сперматозоид). Однако иногда человек наследует дополнительный хромосомный набор от одного из родителей. В случае синдрома Дауна, наиболее часто наследуют две копии 21-й хромосомы от матери и одну 21-ю хромосому от отца, в общей сложности получается три хромосомы 21. Именно из-за такого типа наследования синдром Дауна называют трисомией по 21-ой хромосоме.

Есть еще несколько хромосомных болезней (трисомий) , но подробно мы их разбирать не будем…

Мутации половых хромосом

1. Трисомия Х

У организма с таким заболевание вместо двух Х — ХХХ. Морфологические и функциональные нарушения связаны, в основном, с половой системой. Люди с такой мутацией могут даже не догадываться о своем кариотипе.

(Бывают и тетрасомия — ХХХХ, и пентасомия, но отклонения в развитии в этих случаях уже серьезные)

2. Моносомия Х

(синдром Тернера)

Отклонения есть как в умственном, так и в физическом (в основном. половом) развитии.

3. Синдром ХХУ или ХУУ

(синдром Клайнтельфера)

ХХY — проявляется как женоподобное телосложение (вторичные половые признаки) у мужчин. Люди с такой хромосомной болезнью психически здоровы, но бесплодны.

XYY — здоровы, могут иметь потомство, но агрессивны (социально опасны).

Это далеко не все мутации, известные науке и медицине. Многие из них приводят к смерти еще на стадии эмбрионального развития. Поэтому, в отличие от генных, хромосомные болезни реже передаются по наследству .

Большая часть сведений о хромосомных перестройках , вызывающих фенотипические или телесные изменения и аномалии, была получена в результате исследований генотипа (расположения генов в хромосомах слюнных желез) обыкновенной плодовой мушки. Несмотря на то, что многие болезни человека имеют наследственную природу, лишь в отношении их небольшой части достоверно известно, что они вызваны хромосомными аномалиями. Только из наблюдений за фенотипическими проявлениями мы можем заключить, что произошли те или иные изменения генов и хромосом.

Хромосомы это организованные в виде двойной спирали молекулы дезоксирибонуклеиновой кислоты (ДНК), образующей химическую основу наследственности. Специалисты считают, что хромосомные нарушения возникают в результате перестройки порядка расположения или числа генов в хромосомах. Гены представляют собой группы атомов, входящих в состав молекул ДНК. Как известно, молекулы ДНК определяют характер молекул рибонуклеиновой кислоты (РНК), которые выполняют функцию «доставщиков» генетической информации, определяющей структуру и функцию органических тканей.

Первичная генетическая субстанция, ДНК, действует через посредство цитоплазмы, выполняющей функцию катализатора в изменении свойств клеток, формируя кожу и мышцы, нервы и кровеносные сосуды, кости и соединительную ткань, а также другие специализированные клетки, но не допуская изменений самих генов в ходе этого процесса. Почти на всех этапах строительства организма занято множество генов, и потому совсем не обязательно, чтобы каждый физический признак являлся результатом действия одного гена.

Хромосомное нарушение

Разнообразные хромосомные нарушения могут быть результатом следующих структурных и количественных нарушений:

    Разрыв хромосом. Хромосомные перестройки могут вызываться под воздействием рентгеновских лучей, ионизирующей радиации, возможно, космических лучей, а также многих других, пока неизвестных нам, биохимических или средовых факторов.

    Рентгеновские лучи. Могут вызвать разрыв хромосомы; в процессе перестройки сегмент или сегменты, оторвавшиеся от одной хромосомы, могут быть утеряны, в результате чего возникает мутация или фенотипическое изменение. Становится возможной экспрессия рецессивного гена, обусловливающего определенный дефект или аномалию, поскольку нормальный аллель (парный ген в гомологичной хромосоме) утерян и вследствие этого не может нейтрализовать воздействие дефектного гена.

    Кроссовер. Пары гомологичных хромосом закручены в спираль подобно дождевым червям во время спаривания и могут разрываться в любых гомологичных точках (т. е. на одном уровне образующих пару хромосом). В процессе мейоза происходит разделение каждой пары хромосом таким образом, что только одна хромосома из каждой пары входит в образовавшуюся яйцеклетку или спермий. Когда происходит разрыв, конец одной хромосомы может соединяется с оторвавшимся концом другой хромосомы, а два оставшихся куска хромосом связываются вместе. В результате образуются две совершенно новые и разные хромосомы. Этот процесс называют кроссинговером.

    Дупликация/нехватка генов. При дупликации участок одной хромосомы отрывается и прикрепляется к гомологичной хромосоме, удваивая уже существующую в ней группу генов. Приобретение хромосомой дополнительной группы генов обычно наносит меньший вред, чем утрата генов др. хромосомой. К тому же при благоприятном исходе дупликации ведут к образованию новой наследственной комбинации. Хромосомы с потерянным терминальным участком (и нехваткой локализованных в нем генов) могут приводить к мутациям или фенотипическим изменениям.

    Транслокация. Сегменты одной хромосомы переносятся на другую, негомологичную ей хромосому, вызывая стерильность особи. В этом случае любое негативное фенотипическое проявление не может быть передано последующим поколениям.

    Инверсия. Хромосома разрывается в двух и более местах, и ее сегменты инвертируются (поворачиваются на 180°) перед тем, как соединиться в том же порядке в целую реконструированную хромосому. Это самый распространенный и самый важный способ перегруппировки генов в эволюции видов. Однако новый гибрид может стать изолянтом, поскольку обнаруживает стерильность при скрещивании с первоначальной формой.

    Эффект положения. В случаях изменения положения гена в той же хромосоме у организмов могут обнаруживаться фенотипические изменения.

    Полиплоидия. Сбои в процессе мейоза (хромосомного редукционного деления в ходе подготовки к репродукции), которые затем обнаружатся в зародышевой клетке, могут удваивать нормальное число хромосом в гаметах (сперматозоидах или яйцеклетках).

Полиплоидные клетки присутствуют в нашей печени и некоторых других органах, обычно не нанося сколько-нибудь заметного вреда. Когда же полиплоидия проявляется в наличии одной-единственной «лишней» хромосомы, то появление последней в генотипе может привести к серьезным фенотипическим изменениям. К их числу относится синдром Дауна , при котором в каждой клетке содержится дополнительная 21-я хромосома.

Среди больных с сахарным диабетом встречается незначительный процент рождений с осложнениями, при которых эта дополнительная аутосома (неполовая хромосома) становится причиной недостаточного веса и роста новорожденного и задержки последующего физического и умственного развития. Люди страдающие синдромом Дауна имеют 47 хромосом. Причем дополнительная 47-я хромосома обусловливает у них избыточный синтез фермента, разрушающего незаменимую аминокислоту триптофан, которая встречается в молоке и необходима для нормального функционирования клеток мозга и регуляции сна. Лишь у незначительного процента родившихся с синдромом эта болезнь определенно носит наследственный характер.

Диагностика хромосомных нарушений

Врожденные пороки развития представляют стойкие структурные или морфологические дефекты органа или его части, возникающие внутриутробно и нарушающие функции пораженного органа. Могут возникнуть крупные пороки, которые приводят к значительным медицинским, социальным или косметическим проблемам (спинно-мозговые грыжи, расщелины губы и нёба) и малые, которые представляют собой небольшие отклонения в строении органа, не сопровождающиеся нарушением его функции (эпикант, короткая уздечка языка, деформация ушной раковины, добавочная доля непарной вены).

Хромосомные нарушения имеют деление на:

    Тяжелые (требуют срочного медицинского вмешательства);

    умеренно тяжелые (требуют лечения, но не угрожают жизни пациента).

Врожденные пороки развития представляют собой многочисленную и очень разнообразную группу состояний, наиболее распространенные и представляющие большее значение из них, это:

    анэнцефалия (отсутствие большого мозга, частичное или полное отсутствие костей свода черепа);

    черепно-мозговая грыжа (выпячивание головного мозга через дефект костей черепа);

    спинно-мозговая грыжа (выпячивание спинного мозга через дефект позвоночника);

    врожденная гидроцефалия (избыточное накопление жидкости внутри желудочковой системы мозга);

    расщелины губы с расщелиной (или без неё) нёба;

    анофтальмия/микрофтальмия (отсутствие или недоразвитие глаза);

    транспозиция магистральных сосудов;

    пороки развития сердца;

    атрезия/стеноз пищевода (отсутствие непрерывности или сужение пищевода);

    атрезия ануса (отсутствие непрерывности аноректального канала);

    гипоплазия почек;

    экстрофия мочевого пузыря;

    диафрагмальные грыжи (выпячивание органов брюшной полости в грудную через дефект в диафрагме);

    редукционные пороки конечностей (тотальное или частичное конечностей).

Характерными признаками врожденных аномалий являются:

    Врожденный характер (симптомы и признаки, которые были с рождения);

    однотипность клинических проявлений у нескольких членов семьи;
    длительное сохранение симптомов;

    наличие необычных симптомов (множественные переломы, подвывих хрусталика и другие);

    множественность поражений органов и систем организма;

    невосприимчивость к лечению.

Для диагностики врожденных пороков развития используются различные методы. Распознавание внешних пороков развития (расщелины губы, нёба) основывается на клиническом осмотре больного , который здесь является основным, и, обычно, не вызывает затруднения.

Пороки развития внутренних органов (сердца, легких, почек и других) требуют дополнительные методы исследования, так как специфических симптомов для них нет, жалобы могут быть точно такими же, как и при обычных заболеваниях этих систем и органов.

К этим методам относятся все обычные методы, которые используются и для диагностики неврожденной патологии:

    лучевые методы (рентгенография, компьютерная томография, магнитно-резонансная томография, магнитно-резонансная томография, ультразвуковая диагностика);

    эндоскопические (бронхоскопия, фиброгастродуоденоскопия, колоноскопия).

Для диагностики пороков используют генетические методы исследования: цитогенетические, молекулярно-генетические, биохимические.

В настоящее время врожденные пороки можно выявлять не только после рождения, но и во время беременности. Главным является ультразвуковое исследование плода, с помощью которого диагностируются как внешние пороки, так и пороки внутренних органов. Из других методов диагностики пороков во время беременности применяют биопсию ворсин хориона, амниоцентез, кордоцентез, полученный материал подвергают цитогенетическому и биохимическому исследованию.

Хромосомные нарушения классифицируются по принципы линейной последовательности расположения генов и бывают в виде делеции (нехватка), дупликации (удвоение), инверсии (перевертывание), инсерции (вставка) и транслокации (перемещение) хромосом. В настоящее время известно, что практически все хромосомные нарушения сопровождаются задержкой развития (психомоторного, умственного, физического), кроме того они могут сопровождаться наличием врожденных пороков развития.

Эти изменения характерны для аномалий аутосом (1 - 22 пары хромосом), реже для гоносом (половых хромосом, 23 пара). На первом году жизни ребенка можно диагностировать многие из них. Основные их них это, синдром кошачьего крика, синдром Вольфа-Хиршхорна, синдром Патау, синдром Эдвардса, синдром Дауна, синдром кошачьего глаза, синдром Шерешевского-Тернера, синдром Клайнфелтера.

Раньше диагностика хромосомных болезней основывалась на использовании традиционных методов цитогенетического анализа, этот тип диагностики позволял судить о кариотипе - числе и структуре хромосом человека. При этом исследовании оставались нераспознанными некоторые хромосомные нарушения. В настоящее время разработаны принципиально новые методы диагностики хромосомных нарушений. К ним относятся: хромосомоспецифичные пробы ДНК, модифицированный метод гибридизации.

Профилактика хромосомных нарушений

В настоящее время профилактика этих заболеваний представляет собой систему мероприятий разного уровня, которые направлены на снижение частоты рождения детей с данной патологией.

Имеется три профилактических уровня , а именно:

Первичный уровень: проводятся до зачатия ребенка и направлены на устранение причин, которые могут вызвать врожденные пороки или хромосомные нарушения, или факторов риска. К мероприятиям этого уровня относится комплекс мер, направленных на защиту человека от действия вредных факторов, улучшение состояния окружающей среды, проверка на мутагенность и тератогенность продуктов питания, пищевых добавок, лекарственных препаратов, охрана труда женщин на вредных производствах и тому подобное. После того, как была выявлена связь развития некоторых пороков с дефицитом фолиевой кислоты в организме женщины, было предложено употреблять её в качестве профилактического средства всеми женщинами репродуктивного возраста за 2 месяца до зачатия и в течение 2 - 3 месяцев после зачатия. Также к профилактическим мероприятиям относится вакцинация женщин против краснухи.

Вторичная профилактика: направлена на выявление пораженного плода с последующим прерыванием беременности или при возможности проведением лечения плода. Вторичная профилактика может носить массовый характер (ультразвуковое обследование беременных) и индивидуальный (медико-генетическое консультирование семей с риском рождения больного ребенка, на котором устанавливают точный диагноз наследственного заболевания, определяют тип наследования заболевания в семье, расчет риска повторения болезни в семье, определение наиболее эффективного способа семейной профилактики).

Третичный уровень профилактики: подразумевает проведение лечебных мероприятий, направленных на устранение последствий порока развития и его осложнений. Пациенты с серьезными врожденными аномалиями вынуждены наблюдаться у врача всю жизнь.

Организм человека является сложной системой, деятельность которой регулируется на различных уровнях. При этом определенные вещества должны участвовать в конкретных биохимических процессах, чтобы все клетки, органы и целые системы могли правильно функционировать. А для этого требуется заложить правильное основание. Подобно тому, как многоэтажный дом не выстоит без соответствующим образом подготовленного фундамента, «здание» человеческого тела требует корректной передачи наследственного материала. Именно заложенный в нем генетический код управляет развитием зародыша, позволяет сформироваться всем взаимодействиям и обуславливает нормальное существование человека.

Однако в некоторых случаях в наследственной информации появляются ошибки. Они могут возникать на уровне отдельных генов или же касаться их крупных объединений. Подобные изменения называются генными мутациями. В отдельных ситуациях проблема относится к целым хромосомам, то есть к структурным единицам клетки. Соответственно, их называют хромосомными мутациями. Наследственные болезни, развивающиеся вследствие нарушений хромосомного набора или строения хромосом, получили название хромосомных.

В норме каждая клетка организма содержит одно и то же количество хромосом, объединенных в пары с одинаковыми генами. У человека полный набор состоит из 23 пар, и только в половых клетках вместо 46 хромосом находится половинное число. Это необходимо для того, чтобы в процессе оплодотворения при слиянии сперматозоида и яйцеклетки получилась полноценная комбинация со всеми необходимыми генами. Гены распределены по хромосомам не случайно, а в строго определенном порядке. При этом линейная последовательность сохраняется одинаковой для всех людей.

Однако в процессе образования половых клеток могут произойти различные «ошибки». В результате мутаций изменяется количество хромосом или их структура. По этой причине после оплодотворения в яйцеклетке может оказаться избыточное или, напротив, недостаточное количество хромосомного материала. Из-за дисбаланса процесс развития зародыша нарушается, что может привести к самопроизвольному прерыванию беременности, рождению мертвого ребенка либо развитию наследственного хромосомного заболевания.

Этиология хромосомных заболеваний

К этиологическим факторам хромосомных патологий относятся все разновидности хромосомных мутаций. Кроме того, некоторые геномные мутации также способны оказывать подобное действие.

У человека встречаются делеции, дупликации, транслокации и инверсии, то есть все типы мутаций. При делеции и дупликации генетическая информация оказывается в недостаточном и избыточном количестве соответственно. Поскольку современными методами можно выявить отсутствие даже небольшой части генетического материала (на уровне гена), то провести четкую границу между генными и хромосомными заболеваниями практически невозможно.

Транслокации представляют собой обмен генетическим материалом, который происходит между отдельными хромосомами. Иными словами, происходит перемещение участка генетической последовательности на негомологичную хромосому. Среди транслокаций выделяют две важные группы – реципрокные и Робертсоновские.

Транслокации реципрокного характера без потери задействованных участков называются сбалансированными. Они, как и инверсии, не вызывают потери генной информации, поэтому не приводят к паталогическим эффектам. Тем не менее, при дальнейшем участии таких хромосом в процессе кроссинговера и редукции могут образовываться гаметы с несбалансированными наборами, обладающие недостаточным набором генов. Их участие в процессе оплодотворения приводит к тому, что у потомства развиваются те или иные наследственные синдромы.

Для Робертсоновских транслокаций характерно участие двух акроцентрических хромосом. В ходе процесса короткие плечи утрачиваются, а длинные сохраняются. Из 2 исходных хромосом формируется одна цельная, метацентрическая. Несмотря на потерю части генетического материала развития патологий в таком случае обычно не происходит, поскольку функции утраченных участков компенсируются аналогичными генами в остальных 8 акроцентрических хромосомах.

При концевых делециях (то есть при их утрате) может сформироваться кольцевая хромосома. У ее носителя, получившего такой генный материал от одного из родителей, отмечают частичную моносомию по концевым участкам. При разрыве через центромеру может сформироваться изохромосома, имеющая одинаковые по набору генов плечи (у обычной хромосомы они отличаются).

В некоторых случаях может развиваться однородительская дисомия. Она возникает, если при нерасхождении хромосом и оплодотворении возникнет трисомия, а после этого одна из трех хромосом будет удалена. Механизм этого явления в настоящее время не изучен. Однако в результате в хромосомном наборе появится две копии хромосомы одного родителя, в то время как часть генной информации от второго родителя будет утеряна.

Многообразие вариантов искажения хромосомного набора обуславливает различные формы заболеваний.

Имеется три базовых принципа, которые позволяют точно классифицировать возникшую хромосомную патологию. Их соблюдение обеспечивает однозначное указание на форму отклонения.

Согласно первому принципу необходимо определить характеристику мутации, генной или хромосомной, причем требуется также четко указать конкретную хромосому. К примеру, это может быть простая трисомия по 21 хромосоме или триплоидия. Сочетание индивидуальной хромосомы и типа мутации определяет формы хромосомной патологии. Благодаря соблюдению этого принципа можно точно установить, в какой структурной единице имеются изменения, а также выяснить, зафиксирован избыток или недостаток хромосомного материала. Такой подход более эффективен, чем классификация по клиническим признакам, поскольку многие отклонения вызывают сходные нарушения развития организма.

Согласно второму принципу нужно определить тип клеток, в котором произошла мутация – зигота или гамета. Мутации в гаметах приводят к появлению полных форм хромосомного заболевания. В каждой клетке организма будет содержаться копия генетического материала с хромосомной аномалией. Если же нарушение происходит позднее, на этапе зиготы или во время дробления, то мутация классифицируется как соматическая. В этом случае часть клеток получает изначальный генетический материал, а часть – с измененным хромосомным набором. Одновременно в организме может присутствовать два и более типа наборов. Их сочетание напоминает мозаику, поэтому такая форма болезни называется мозаичной. Если в организме присутствует более 10% клеток с измененным хромосомным набором, клиническая картина повторяет полную форму.

Согласно третьему принципу выявляется поколение, в котором мутация появилась первый раз. Если изменение было отмечено в гаметах здоровых родителей, то говорят о спорадическом случае. Если же оно уже имелось в материнском или отцовском организме, то речь идет о наследуемой форме. Значительная часть унаследованных хромосомных заболеваний вызывается робертсоновскими транслокациями, инверсиями и сбалансированными реципрокными транслокациями. В процессе мейоза они могут привести к образованию патологической комбинации.

Полная точная диагностика подразумевает, что установлены тип мутации, затронутая хромосома, выяснен полный или мозаичный характер заболевания, а также установлена передача по наследству или спорадическое возникновение. Получить необходимые для этого данные можно при проведении генетической диагностики с использованием проб пациента, а в некоторых случаях и его родственников.

Общие вопросы

Интенсивное развитие генетики в течение последних десятилетий позволило развить отдельное направление хромосомной патологии, которая постепенно приобретает все большое значение. К этой области относятся не только хромосомные болезни, но и различные нарушения во время внутриутробного развития (к примеру, выкидыши). В настоящее время счет аномалий идет уже на 1000. Свыше ста форм характеризуются клинически очерченной картиной и называются синдромами.

Выделяется несколько групп болезней. Триплоидией называется случай, при котором в клетках организма имеется лишняя копия генома. Если же появился дубликат только одной хромосомы, то подобное заболевание называется трисомией. Также причинами аномального развития организма могут быть делеции (удаленные участки генетического кода), дупликации (соответственно, лишние копии генов или их групп) и иные дефекты. Английский врач Л. Даун в 1866 году описал одну из самых известных болезней такого рода. Синдром, получивший его имя, развивается при наличии лишней копии 21 хромосомы (трисомия-21). Трисомии по другим хромосомам, как правило, заканчиваются выкидышами или приводят к смерти в детском возрасте из-за серьезных нарушений в развитии.

Позже были открыты случаи моносомии по X-хромосоме. В 1925 году Шерешевский Н.А и в 1938 году Тернер Г. описали его симптомы. Трисомия-XXY, которая встречается у мужчин, была описана Клайнфельтером в 1942 году.

Указанные случаи заболеваний стали первыми объектами исследований в этой области. После того, как расшифровали этиологию трех перечисленных синдромов, фактически появилось направление хромосомных болезней. В течение 60-х годов дальнейшие цитогенетические исследования привели к формированию клинической цитогенетики. Ученые доказали связь между патологическими отклонениями и хромосомными мутациями, а также получили статистические данные о частоте появления мутаций у новорожденных и в случаях самопроизвольного прерывания беременности.

Типы хромосомных аномалий

Хромосомные аномалии могут быть как относительно крупными, так и небольшими. В зависимости от их размеров меняются методы исследования. К примеру, для точечных мутаций, делеций и дупликаций, касающихся участков длиной в сотню нуклеотидов, обнаружение при помощи микроскопа невозможно. Определить хромосомное нарушение при помощи метода дифференциального окрашивания возможно только в том случае, если величина затронутого участка исчисляется в миллионах нуклеотидов. Небольшие мутации можно выявить лишь при помощи установления нуклеотидной последовательности. Как правило, большие по размерам нарушения (к примеру, видимые в микроскоп) приводят к более выраженному воздействию на функционирование организма. Кроме того, аномалия может затрагивать не только ген, но и участок наследственного материала, функции которого в настоящее время не исследованы.

Моносомией называется аномалия, выражающаяся в отсутствии одной из хромосом. Обратным случаем является трисомия – добавление лишней копии хромосомы к стандартному набору из 23 пар. Соответственно, меняется и число копий генов, которые в норме присутствуют в двух экземплярах. При моносомии отмечается нехватка гена, при трисомии – его избыток. Если хромосомная аномалия приводит к изменению числа отдельных участков, то говорят о частичной трисомии или моносомии (к примеру, по плечу 13q).

Известны также случаи однородительской дисомии. При этом пара гомологичных хромосом (либо одна и часть гомологичной ей) попадает в организм от одного из родителей. Причиной является неизученный механизм, предположительно состоящий из двух фаз – образование трисомии и удаление одной из трех хромосом. Воздействие однородительской дисомии может быть как незначительным, там и заметным. Дело в том, что если в одинаковых хромосомах имеется рецессивный мутантный аллель, то он автоматически проявляется. В то же время родитель, от которого была получена хромосома с мутацией, из-за гетерозиготности по гену может не иметь проблем со здоровьем.

Из-за высокой важности генетического материала для всех этапов развития организма даже небольшие аномалии могут вызвать серьезные изменения в скоординированной деятельности генов. Ведь их совместная работа шлифовалась в течение миллионов лет эволюции. Неудивительно, что последствия от возникновения такой мутации, скорее всего, начинают проявляться уже на уровне гамет. Особенно сильно они влияют на мужчин, поскольку зародыш в определенный момент должен перейти с женского пути развития на мужской. Если же активности соответствующих генов недостаточно, возникают различные отклонения, вплоть до гермафродитизма.


Первые исследования эффектов от хромосомных нарушений стали проводить в 60-х годах, после того как был установлен хромосомный характер некоторых заболеваний. Можно условно выделить две большие группы связанных эффектов: врожденные пороки развития и изменения, вызывающие летальные исходы. Современная наука располагает сведениями, что хромосомные аномалии начинают проявляться уже на стадии зиготы. Летальные эффекты при этом являются одной из основных причин гибели плода в утробе (этот показатель у человека достаточно высок).

Хромосомные аберрации – это изменение структуры хромосомного материала. Они могут как возникать спорадически, так и передаваться по наследству. Точная причина, по которой они появляются, не установлена. Ученые полагают, что за некоторую часть таких мутаций отвечают различные факторы окружающей среды (например, химически активные вещества), которые воздействуют на эмбрион или даже на зиготу. Интересен тот факт, что большая часть хромосомных аберраций обычно связана с хромосомами, которые зародыш получает от отца.

Значительная часть хромосомных аберраций встречается очень редко и была обнаружена один раз. В то же время некоторые другие достаточно часто встречаются, причем даже у людей, не связанных родственными узами. К примеру, широко распространена транслокация центромерных или близких к ним районов 13 и 14 хромосом. Утрата неактивного хроматина коротких плеч практически не влияет на состояние здоровья. При аналогичных робертсоновских транслокациях в кариотип попадает 45 хромосом.

Примерно две трети всех обнаруживаемых у новорожденных хромосомных аномалий компенсируются за счет других копий генов. По этой причине они не несут серьезной угрозы нормальному развитию ребенка. Если же компенсация нарушения невозможна, возникают пороки развития. Часто такая несбалансированная аномалия выявляется у больных с умственной отсталостью и другими врожденными пороками, а также у плода после самопроизвольных абортов.

Известны компенсированные аномалии, которые способны наследоваться из поколения в поколение без возникновения заболеваний. В некоторых случаях такая аномалия может перейти в несбалансированную форму. Так, если имеется транслокация, затрагивающая 21 хромосому, возрастает риск трисомии по ней. По статистике такие транслокации имеются у каждого 20 ребенка, у которого зафиксирована трисомия-21, причем в каждом пятом случае аналогичное нарушение есть у одного из родителей. Поскольку большая часть детей с вызванной транслокацией трисомией-21 рождается у молодых (менее 30 лет) мам, то в случае обнаружения этого заболевания у ребенка необходимо произвести диагностическое обследование молодых родителей.

Риск появления нарушений, которые не компенсируются, сильно зависит от транслокации, поэтому теоретические расчеты затруднены. Тем не менее, приблизительно определить вероятность соответствующей патологии можно на основании статистических данных. Такая информация собрана для распространенных транслокаций. В частности, робертсоновская транслокация между 14 и 21 хромосомами у матери с вероятностью 2 процента приводит к трисомии-21 у ребенка. Эта же транслокация у отца передается по наследству с вероятностью 10%.

Распространенность хромосомных аномалий

Результаты исследований показывают, что как минимум десятая часть яйцеклеток после оплодотворения и около 5-6 процентов плодов имеют различные хромосомные аномалии. Как правило, на 8-11 неделе в таком случае происходит самопроизвольное прерывание беременности. В некоторых случаях они вызывают более поздние выкидыши или приводят к рождению мертвого ребенка.

У новорожденных (по результатам обследования более 65 тысяч детей) изменение числа хромосом либо значительные хромосомные аберрации встречаются примерно у 0,5% от общего количества. Как минимум каждый 700-й имеет трисомию по 13, 18 или 21 хромосоме; около 1 из 350 мальчиков имеют расширенный до 47 единиц набор хромосом (кариотипы 47,XYY и 47,XXY). Моносомия по X-хромосоме встречается реже – единичные случаи на несколько тысяч. Порядка 0,2% имеют компенсированные хромосомные аберрации.

У взрослых иногда также выявляются наследуемые отклонения (как правило, компенсированные), иногда с трисомией по половым хромосомам. Исследования также показывают, что примерно 10-15 процентов от общего числа случаев умственной отсталости могут быть объяснены наличием хромосомной аномалии. Этот показатель значительно возрастает, если вместе с нарушениями умственного развития наблюдаются анатомические дефекты. Бесплодие также часто вызывается лишней половой хромосомой (у мужчин) и моносомией/аберрацией по X хромосоме (у женщин).

Связь хромосомных аномалий и злокачественных образований

Как правило, исследование клеток злокачественных новообразований приводит к обнаружению видимых в микроскоп хромосомных аномалий. Сходные результаты дает проверка при лейкозе, лимфоме и ряде других заболеваний.

В частности, для лимфом нередким случаем является обнаружение транслокации, сопровождающейся разрывом внутри или рядом с локусом тяжелой цепи иммуноглобулина (14 хромосома). При этом ген MYC перемещается с 8 хромосомы на 14.

Для миелолейкоза в большинстве случаев (свыше 95%) фиксируется транслокация между 22 и 9 хромосомами, вызывающая появление характерной «филадельфийской» хромосомы.

Бластный криз в процессе развития сопровождается появлением в кариотипе последовательных хромосомных аномалий.

Методами дифференциального окрашивания с последующим наблюдением в микроскоп, а также при помощи молекулярно-генетических способов тестирования, можно своевременно выявлять хромосомные аномалии при различных лейкозах. Эта информация помогает сделать прогноз развития, по ней уточняется диагноз и корректируется терапия.

Для распространенных солидных опухолей, таких, как рак толстой кишки, рак молочной железы и т.д. обычные цитогенетические методы применимы с некоторыми ограничениям. Тем не менее, характерные для них хромосомные аномалии также были выявлены. Имеющиеся в опухолях отклонения часто связаны с генами, отвечающими за процесс нормального роста клеток. Из-за амплификации (образования множественных копий) гена иногда отмечается формирование мелких мини-хромосом в клетках новообразований.

В некоторых случаях появление злокачественного образования вызывает потеря гена, который должен обеспечивать подавление пролиферации. Причин может быть несколько: делеции и разрыв в процессе транслокации являются наиболее частыми. Мутации такого рода принято считать рецессивными, поскольку наличие даже одной нормальной аллели обычно обеспечивает достаточный контроль роста. Нарушения могут появляться или наследоваться. Если же в геноме отсутствует нормальная копия гена, то пролиферация перестает зависеть от регулирующих факторов.

Таким образом, наиболее значимыми хромосомными аномалиями, влияющими на возникновение и рост злокачественных новообразований, являются следующие типы:

Транслокации, поскольку они могут привести к нарушению нормального функционирования генов, отвечающих за пролиферацию (либо вызвать их усиленную работу);

Делеции, которые наряду с прочими рецессивными мутациями вызывают изменения в процессе регуляции роста клетки;

Рецессивные мутации, из-за рекомбинации становящиеся гомозиготными и оттого проявляющиеся в полной мере;

Амплификации, стимулирующие пролиферацию клеток опухоли.

Выявление указанных мутаций в ходе генетической диагностики может указывать на повышенный риск развития злокачественных новообразований.

Известные заболевания хромосомной природы

Одним из самых известных заболеваний, происходящих по причине наличия аномалий в генетическом материале, является синдром Дауна. Он обуславливается трисомией по 21 хромосоме. Характерным признаком этой болезни является отставание в развитии. Дети испытывают серьезные проблемы во время обучения в школе, часто им требуется альтернативная методика преподавания материала. Вместе с тем отмечаются нарушения физического развития – плоское лицо, увеличенные глаза, клинодактилия и другие. Если такие люди прикладывают значительные усилия, они могут достаточно хорошо социализироваться, известен даже случай успешного получения высшего образования мужчиной с синдромом Дауна. У больных повышен риск заболеть деменцией. Это и ряд других причин приводит к небольшой продолжительности жизни.

К трисомии относится и синдром Патау, только в этом случае имеется три копии 13 хромосомы. Для заболевания характерны множественные пороки развития, часто с полидактилией. В большинстве случаев отмечается нарушение деятельности центральной нервной системы либо ее неразвитость. Часто (примерно в 80 процентах) больные имеют пороки развития сердца. Тяжелые нарушения приводят к высокой смертности – в первый год жизни умирает до 95% детей с этим диагнозом. Заболевание не поддается лечению или коррекции, как правило, можно лишь обеспечить достаточно постоянный контроль состояния человека.

Еще одна форма трисомии, с которой рождаются дети, относится к 18 хромосоме. Заболевание в этом случае носит название синдрома Эдвардса и характеризуется множественными нарушениями. Деформируются кости, часто наблюдается измененная форма черепа. Сердечно-сосудистая система обычно с пороками развития, также проблемы отмечаются с органами дыхания. В результате около 60% детей не доживают до 3 месяцев, к 1 году умирает до 95% детей с этим диагнозом.

Трисомия по другим хромосомам у новорожденных практически не встречается, поскольку почти всегда приводит к преждевременному прерыванию беременности. В части случаев рождается мертвый ребенок.

С нарушениями числа половых хромосом связан синдром Шерешевского-Тернера. Из-за нарушений в процессе расхождения хромосом теряется X-хромосома в женском организме. В результате организм не получает должного количества гормонов, поэтому нарушается его развитие. В первую очередь это относится к половым органам, которые развиваются лишь отчасти. Практически всегда для женщины это обозначает невозможность иметь детей.

У мужчин полисомия по Y или X хромосоме приводит к развитию синдрома Клайнфельтера. Для этого заболевания характерна слабая выраженность мужских признаков. Зачастую сопровождается гинекомастией, возможно отставание в развитии. В большинстве случаев наблюдаются ранние проблемы с потенцией и бесплодие. В этом случае, как и для синдрома Шерешевского-Тернера, выходом может стать экстракорпоральное оплодотворение.

Благодаря методам пренатальной диагностики стало возможным выявление этих и других заболеваний у плода во время беременности. Семейные пары могут принять решение о прерывании беременности, чтобы попробовать зачать другого ребенка. Если же они принимают решение выносить и родить малыша, то знание особенностей его генетического материала позволяет заранее подготовиться к определенным методам профилактики или лечения.

Кариотип – систематизированный набор хромосом ядра клетки с его количественными и качественными характеристиками.

Нормальный женский кариотип - 46,XX Нормальный мужской кариотип - 46,XY

Исследование кариотипа - процедура, призванная выявить отклонения структуры строения и числа хромосом.

Показания для кариотипирования:

  • Множественные врожденные пороки развития, сопровождаемые клинически анормальным фенотипом или дизморфизмом
  • Умственная отсталость или отставание в развитии
  • Нарушение половой дифференцировки или аномалии полового развития
  • Первичная или вторичная аменорея
  • Аномалии спермограммы – азооспермия или тяжелая олигоспермия
  • Бесплодие неясной этиологии
  • Привычное невынашивание
  • Родители пациента со структурными хромосомными аномалиями
  • Повторное рождение детей с хромосомными аномалиями

К сожалению, с помощью исследования кариотипа можно определить лишь крупные структурные перестройки. В большинстве же случаев аномалии строения хромосом представляют собой микроделеции и микродупликации невидимые под микроскопом. Однако такие изменения хорошо идентифицируются современными молекулярными цитогенетическими методами - флуоресцентной гибридизацией (FISH) и хромосомным микроматричным анализом.

Аббревиатура FISH расшифровывается как fluorescent in situ hybridization – флуоресцентная гибридизация на месте. Это цитогенетический метод, который применяют для выявления и определения положения специфической последовательности ДНК на хромосомах. Для этого используют специальные зонды - нуклеозиды, соединенные с флуорофорами или некоторыми другими метками. Визуализацию связавшихся ДНК-зондов проводят при помощи флуоресцентного микроскопа.

Метод FISH позволяет изучать небольшие хромосомные перестройки, которые не идентифицируются при стандартном исследовании кариотипа. Однако, имеет один существенный недостаток. Зонды являются специфичными только к одному участку генома и, как следствие, при одном исследовании можно определить наличие или число копий только этого участка (или нескольких при использовании многоцветных зондов). Поэтому важным является правильная клиническая предпосылка, а FISH анализ может только подтвердить иди не подтвердить диагноз.

Альтернативой этому методу является хромосомный микроматричный анализ, который при такой же точности, чувствительности и специфичности определяет количество генетического материала в сотнях тысяч (и даже миллионах) точек генома, что дает возможность диагностики практически всех известных микроделеционных и микродупликационных сииндромов.

Хромосомный микроматричный анализ – молекулярно-цитогенетический метод для выявления вариаций числа копий ДНК по сравнению с контрольным образцом. При выполнении этого анализа исследу¬ются все клинически значимые участки генома, что позволяет с максимальной точностью исключить хромосомную патологию у обследуемого. Таким образом могут быть выявлены патогенные деле¬ции (исчезновение участков хромосом), дупликации (появление дополни¬тельных копий генетического материала), участки с потерей гетерозиготности, которые имеют важное значение при болезнях импринтинга, близкородственных браках, аутосомно-рецессивных заболеваниях.

Когда необходим хромосомный микроматричный анализ

  • В качестве теста первой линии для диагностики пациентов с дизморфиями, врожденными пороками развития, умственной отсталостью/задержкой развития, множественными врожденными аномалиями, аутизмом, судорогами или любым подозрением на наличие геномного дисбаланса.
  • В качестве замены кариотипа, FISH и сравнительной геномной гибридизации, если подозревается микроделеционный/микродупликационный синдром.
  • В качестве исследования для выявления несбалансированных хромосомных аберраций.
  • В качестве дополнительного диагностического исследования при моногенных заболеваниях, связанных с функциональной потерей одного аллеля (гаплонедостаточностью), особенно если при секвенировании не удается выявить патогенную мутацию, и делеция всего гена может быть причиной.
  • Для определения происхождения генетического материала при однородительских дисомиях, дупликациях, делециях.

1 тест - 400 синдромов (список)

Введение в хромосомный микроматричный анализ.

Информация для врачей

Правила забора материала для хромосомного микроматричного анализа



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения