Подпишись и читай
самые интересные
статьи первым!

Спиральный орган. Что такое кортиев орган? Виды клеток спирального органа и их функции

Внутреннее ухо состоит из костного лабиринта и включенного в него перепончатого лабиринта.

Лабиринт подразделяется на 3 отдела – средний – преддверие, кзади от него – система полукружных каналов, впереди от преддверия – улитка.

Перепончатая улитка – спиралевидный канал с расположенным внутри него рецепторным аппаратом – спиральным (или кортиевым органом). На поперечном разрезе улитковый ход имеет треугольную форму; образован вестибулярной стенкой (обращенной к лестнице преддверия; представляет собой очень тонкую мембрану Reissneri); наружная стенка образована спиральной связкой с расположенными на ней эпителиальными клетками сосудистой полоски; нижняя тимпанальная стенка обращена к барабанной лестнице и представлена основной мембраной, на которой лежит спиральный орган – периферический рецептор кохлеарного нерва.

Спиральный (кортиев) орган состоит из нейроэпителиальных наружных и внутренних волосковых клеток, поддерживающих клеток (Дейтерса, Гензена, Клаудиуса), наружных и внутренних столбиковых клеток, образующих кортиевы дуги. Внутренние и наружные столбиковые клетки образуют кортиев тоннель. Кнутри от внутренних столбиковых клеток располагается ряд внутренних волосковых клеток (количеством до 3500); снаружи от наружных столбиковых клеток – 4 ряда наружных волосковых клеток (по 5000 в каждом ряду), поддерживаемых клетками Дейтерса, Гензена и Клаудиуса. Волосковые клетки охватываются нервными волокнами, исходящими из биполярных клеток спирального ганглия. Между клетками кортиева органа имеются внутриэпителиальные пространства, заполненные жидкостью (кортилимфой). Она имеет связь с перелимфой и довольно близка к ней по химическому составу. Считается, что основная функция кортилимфы – трофическая (т.к. кортиев орган не имеет собственной васкуляризации).

Над кортиевым органом расположена покровная мембрана – мягкая, упругая пластинка, состоящая из протофибрилл, имеющих продольное и радиальное направление. Эластичность этой мембраны различна в продольном и поперечном направлениях. В покровную мембрану проникают волоски нейроэпителиальных волосковых клеток. При колебаниях основной мембраны происходит напряжение и сжатие этих волосков, что служит моментом трансформации механической энергии в энергию электрического нервного импульса.

Периферический рецептор слухового анализатора – спиральный орган. Сюда (к волосковым клеткам) подходят дендриты клеток спирального ганглия, расположенного в улитке лабиринта. Аксоны проникают в полость черепа через внутреннее слуховое отверстие, входят в ствол мозга в мостомозжечковом углу и заканчиваются в вентральном и дорсальном ядрах моста – вторые нейроны слухового пути. От оливы начинается третий нейрон. Подкорковые слуховые центра – в задних бугорках четверохолмия и медиальном коленчатом теле. Корковый коней слухового анализатора – в заднем отделе верхней височной извилине и извилине Гешля.


Резонансная теория Геймгольца.

В XIX веке, когда господ­ствующим в медицине было морфологическое направление, в качестве основного критерия, определяющего звуковосприятие, бралась определенная деталь строения слухового органа. Основная мембрана, на которой расположен спиральный орган, при осмотре ее с помощью увеличительной оптики имеет поперечную исчерченность, как бы состоит из «струн» разной длины. Исходя из этого факта, Гельмгольц в 1863 г. создал так называемую резонансную теорию слуха. Согласно этой теории , в улитке возникают явления механического резонанса в отношении звуковых колебаний различных частот. По аналогии со струнными инструментами звуки высокой частоты приводят в колебательное движение участок основной мембраны, с короткими волокнами у основания улитки, а звуки низкой частоты - в колебательное движение участок мембраны с длинными волокнами у верхушки улитки. При подаче и восприятии сложных звуков одновременно начинает колебаться несколько участков мембраны. Чувствительные клетки спирального органа воспринимают эти колебания и передают по нерву слуховым центрам. На основании изучения теории Гельмгольца можно сделать три вывода : 1) улитка является тем звеном слухового анализатора, где возникает первич­ный анализ звуков; 2) каждому простому звуку присущ опреде­ленный участок на основной мембране; 3) низкие звуки приводят в колебательное движение участки основной мембраны, располо­женные у верхушки улитки, а высокие - у ее основания.

Таким образом, теория Гельмгольца впервые позволила объяс­нить основные свойства уха, т. е. определение высоты, силы и тембра. В свое время эта теория нашла много сторонников и до сих пор считается классической. Действительно, вывод Гельмгольца о том, что в улитке происходит первичный пространственный анализ звуков, полностью соответствует теории И. П. Павлова о способности к первичному анализу как концевых приборов афферентных нервов, так и в особенности сложных рецепторных аппаратов.

Резонансная теория Гельмгольца получила подтверждение и в клинике. Гистологическое исследование улиток умерших людей, страдавших островковыми выпадениями слуха, позволило обнару­жить изменения кортиева органа в участках, соответствующих утраченной части слуха. Вместе с тем современные знания не подтверждают возможность резонирования отдельных «струн» ос­новной мембраны; следовательно, необходимы более точные объ­яснения пространственной рецепции звуков в улитке.

2. Травмы и инородные тела полости носа, ринолиты. Диагностика. Методы удаления инородных тел. Осложнения .

Спиральный орган образован рецепторными волосковыми сенсорными эпителиоцитами и опорными эпителиоцитами, имеющими высокую степень структурно-функциональной специализации. Ре-цепторные клетки подразделяются на внутренние и наружные волосковые сенсорные эпителиоциты. Внутренние сенсорные эпителиоциты имеют кувшинообразную форму. Их ядра лежат в расширенной базальной части клетки.

На поверхности суженной апикальной части клетки имеются кутикула и проходящие через нее 30-60 коротких микровыростов (слуховых волосков), расположенных в 3-4 ряда. Это стереоцилии. В отличие от киноцилий они неподвижны. Общее число внутренних сенсорных эпителиоци-тов - около 3500. Располагаются они в один ряд вдоль всего спирального органа. Их поддерживают внутренние фаланговые эпителиоциты.

Наружные сенсорные эпителиоциты имеют цилиндрическую форму. На апикальной поверхности этих клеток имеется кутикула, через которую проходят слуховые волоски - стереоцилии. Стереоцилии в количестве 60-70 образуют щеточку, располагаясь несколькими рядами. На поверхности волосковых сенсорных клеток среди стереоцилии киноцилий отсутствуют, но от них сохраняются базальные тельца. Своими вершинами стереоцилии прикрепляются к внутренней поверхности покровной (желатинозной) мембраны, нависающей над спиральным органом.

Округлым основанием наружные волосковые эпителиоциты опираются на поддерживающие эпителиоциты, контактируя с чувствительными нервными волокнами нейронов спирального ганглия. Наружные волосковые клетки лежат в виде трех параллельных рядов по всей длине спирального органа. Общее их число 12-20 тыс. Наружные сенсорные эпителиоциты воспринимают звуки большой интенсивности, внутренние могут воспринимать и слабые звуки. Сенсорные эпителиоциты, находящиеся на вершине улитки, воспринимают низкие звуки, клетки у основания - высокие.

К базальной поверхности сенсорных эпителиоцитов подходят афферентные волокна преимущественно спирального ганглия и эфферентные волокна оливокохлеарных путей, которые формируют здесь синаптические контакты. Внутренние сенсорные эпителиоциты имеют преимущественно афферентную иннервацию, а наружные - преимущественно эфферентную иннервацию. Роль последней заключается в торможении и модуляции нервного импульса.

Опорные эпителиоциты спирального органа отличаются выраженной дивергентной дифференцировкой. Различают несколько разновидностей этих клеток: внутренние фаланговые эпителиоциты, внутренние и наружные столбовые эпителиоциты (клетки-столбы), наружные фаланговые эпителиоциты (клетки Дейтерса), наружные пограничные эпителиоциты (клетки Гензена), наружные поддерживающие эпителиоциты (клетки Клаудиуса). Название "фаланговые" для внутренних и наружных поддерживающих эпителиоцитов дано в связи с тем, что эти клетки имеют тонкие пальцевидные отростки.

Посредством этих отростков волосковые сенсорные эпителиоциты отделяются друг от друга. В отличие от волосковых эпителиоцитов все опорные эпителиоциты непосредственно прилежат к базальной мембране, где обнаруживаются многочисленные полудесмосомы. Через всю цитоплазму фаланговых эпителиоцитов проходит пучок фибрилл, начинающихся от полудесмосом и образующих на апикальной поверхности расширенную плоскую пластинку. Между этой пластинкой и апикальной частью волосковых клеток имеются плотные контакты типа замыкающей полоски. Пучки фибриллярного вещества проходят и через клетки-столбы.

Гистофизиология слуха

Звуки определенной частоты , воспринятые наружным ухом и переданные через слуховые косточки и овальное окно перилимфе барабанной лестницы, вызывают колебания базилярной мембраны. В ответ на частоту звука возникают колебания определенных участков спирального органа. Они воспринимаются волосковыми сенсорными эпителиоцитами благодаря тому, что их волоски смещаются относительно покровной мембраны, в которую их кончики погружены. Это приводит к возбуждению сенсорных эпителиоцитов и к изменению импульсации в афферентных нервных веточках, оплетающих основания волосковых сенсорных эпителиоцитов.

От афферентных окончаний на волосковых клетках нервные импульсы передаются нейронам спирального ганглия. Один нейрон может получать импульсы от многих волосковых сенсорных эпителиоцитов. Затем импульсы передаются по аксонам нейронов спирального ганглия, которые формируют улитковый нерв, в слуховые ядра ствола мозга и далее в слуховую область коры большого мозга (верхнюю височную извилину).

Многих интересует кортиев орган и его функции. Иметь хотя бы сжатое представление о нем должен каждый человек. Кортиевым органом называется периферическая часть слухового аппарата. Она находится в В ходе эволюции на базе органов боковой линии (а именно их структур) и развилась данная часть слухового анализатора.

Она улавливает вибрации волн, находящихся в лабиринте а затем посылает их на слуховой участок коры больших полушарий, в результате чего и происходит восприятие звуков. Кортиев орган выполняет важную функцию. Именно в нем осуществляется начальное формирование анализа всевозможных Данный орган впервые обнаружил Альфонсо Корти - итальянский гистолог.

Где находится кортиев орган?

Расположен он в улитковом ходе, в котором находится перилимфа, а также эндолимфа, и представляет собой костный лабиринт, похожий на спираль. Верхняя часть хода соседствует с так называемой вестибулярной лестницей. Именуется она рейснеровой мембраной. А нижняя часть, находящаяся возле барабанной лестницы, состоит из основной перепонки, соприкасающейся с костной спиральной пластинкой.

Предназначение и структура

Кортиев орган находится на основной перепонке, он сформирован наружными, а также внутренними волосковыми и поддерживающими клетками. В качестве примера можно привести столбовые. Также сюда относятся клетки Гензена, Клаудиуса и Дейтерса. Из них и состоит кортиев орган. Между ними расположен тоннель, по которому проходят аксоны, находящиеся в нервном спиральном узле. Они устремляются к реагирующим на волосковым клеткам. Последние, в свою очередь, лежат в выемках, созданных телами поддерживающих клеток. На их поверхности, повернутой к покровной мембране, расположено от 30 до 60 недлинных волосков. Поддерживающие клетки осуществляют также трофическую функцию. Как именно? Они посылают к волосковым клеткам питательные элементы. Роль кортиева органа - трансформация энергии звуковых вибраций в нервное возбуждение. Для этого, собственно говоря, он и нужен. Вот какую функцию выполняет кортиев орган. Гистология позволяет познакомиться еще и с его строением.

Физиология

Барабанная перепонка улавливает звуковые вибрации, которые посредством косточек, расположенных в среднем ухе, попадают в жидкие среды - эндолимфу, а также перилимфу. Их движения способствуют тому, что покровная мембрана кортиева органа немного удаляется от волосковых клеток. Что же происходит в результате? Сначала сгибаются волоски.

Затем появляются биопотенциалы, которые воспринимаются спиральным ганглием (а если точнее, отростками его нейронов). Они подходят к нижней части всех волосковых клеток. Строение кортиева органа представляет большой интерес для многих исследователей.

Еще одна теория

Существует также другое мнение на этот счет. Согласно ему, волоски клеток, улавливающих звуковые сигналы, - всего лишь чуткие антенны, которые деполяризуются в результате воздействия прибывающих волн. Значительную роль здесь играет эндолимфатический ацетилхолин. Деполяризация запускает последовательность химических трансформаций в волосковых клетках, а именно в их цитоплазме. После этого в соприкасающихся с ними нервных окончаниях появляется нервный импульс. У звуковых вибраций бывает разная высота. Для каждой из них предназначена отдельная часть кортиева органа. Высокие частоты провоцируют вибрацию на участках улитки, расположенных ближе к основанию, а низкие - вверху. Это объясняется гидродинамическими явлениями в улитке. Кортиев орган, функции которого вам теперь известны, играет во всем этом процессе значительную роль.

Почему этот процесс так важен?

Благодаря вышеприведенным особенностям, мозг может незамедлительно отзываться на определенные звуковые сигналы, а не осуществлять прибегая к помощи математики (кстати, для этого ему недостает вычислительных возможностей), чтобы рассортировать улавливаемую информацию по источникам. Это было бы слишком сложно. Легче понять, что такое кортиев орган, чем представить себе такой процесс.

Как получить необходимую информацию?

Чтобы узнать больше сведений об угловом направлении источника сигнала, нужно обратить внимание на поляризацию звуковых гармоник. Это важное условие. Получается, что ухо позволяет завладеть сведениями о поляризации. Также можно узнать об амплитуде всех гармоник звуковых сигналов. В случае с мозг и ухо, помимо всего прочего, получают сведения, касающиеся фазы гармоник, а значит, можно проследить направление вибрации. Что для этого нужно сделать? Просто высчитать разность фаз звука от левого, а также правого уха. Достаточно легко, не правда ли? Хотя, конечно, проще разобраться в том, что собой представляет кортиев орган.

Особенность добавочного сжатия звуковой информации позволяет заметно уменьшить время на то, чтобы проанализировать сведения, которые были получены. Улитка является закрученной, и благодаря этому появляется возможность снимать спектр, одновременно совмещая октавы.

Теперь вам известно, что представляет собой кортиев орган и какую он имеет структуру. Также вы в курсе выполняемых им функций. Все это очень важно и полезно знать.

Продольно по всей длине спирально закрученной, базилярной мембраны улиткового хода имеется утолщение, исследования которого под микроскопом, обнаружили в нем рецепторные, слуховые клетки. Рецепторные, слуховые клетки представляют собой сенсорный, периферический рецепторный орган слуховой системы, или звуковоспринимающий орган слуха, который называют спиральным органом, или органом Кортий (имя ученого, его открывшего). Спиральный орган располагается на основной мембране в виде ее эпителиального утолщения, за исключением самого начала основания улитки и самой ее верхушки. Спиральный органа не имеет кровеносных сосудов, за трофику рецепторных слуховых клеток, расположенных в спиральном органе отвечает сосудистая полоска костной стенки улиткового хода. Спиральный орган состоит из трех рядов наружных и одного ряда внутренних волосковых клеток, лежащих вдоль спирально закрученной основной мембраны, между которыми находится треугольный туннель. Дуги туннеля образованы из внутренних и наружных столбовых клеток , их нижние концы находятся на основной мембране, а верхние концы наклонены друг к другу, и образуют треугольное пространство туннеля, спирально проходящее через все завитки улитки.

Рис.5 Общий вид спирального органа на основной мембране.

11 Дендриты слухового ганглия у основания внутренних слуховой клеток. 12 Внутренние волосковые клетки. 13 Покровная мембрана спирального органа. 14 Наружные волосковые клетки.

Рис. 6 Улитковый ход и спиральный (кортиев) орган. 1 Преддверная лестница. 2 Барабанная лестница. 3Улитковый ход. 4 Преддверная мембрана (Рейсснера). 5 Внутренний эпителий. 6 Сосудистая полоска. 7 Костная спиральная пластинка. 8 Утолщение костной спиральной пластинки. 9 Место отхождения преддверной мембраны и покровной мембраны. 10 Перепончатая спиральная мембрана. 11Клетки Дейтерса и Клаудиуса. 12 Покровная мембрана. 13 Стержень улитки. 14 Костная стенка завитка улитки.

Рис 7 Спиральный орган – орган Кортий. Tectorial membrane – покровная мембрана, Stereocillia – волоски, Afferent axons – восходящие волокна, Basilar Membrane – основная мембрана, Inner hair cells – внутренние волосковые клетки, Tunnel of Corti – туннель Корти, Efferent axsons – нисходящие волокна, Outer hair cells – наружные волосковые клетки.

На внутреннем скате туннеля, расположенном ближе к стержню улитки, продольно по отношению к основной мембране располагаются внутренние волосковые клетки (ВВК), которые в поперечном направлении состоят из одного ряда. ВВК имеют утолщенную книзу форму, общее их количество по всей длине основной мембраны примерно 3500. ВВК находятся между столбовыми клетками, удерживаются внутренними опорными клетками, и не доходят до основной мембраны.На верхней поверхности каждой ВВК находятся 50 – 70 коротких стереоцилий, расположенных поперечно в один ряд, и омываемых эндолимфой улиткового хода, Внутренние волосковые клетки высоко специфичны к восприятию частот, и воспринимают интенсивные звуки.

Рис 9 Строение внутренней и наружной, волосковых клеток спирального органа.

За наружным скатом туннеля продольно основной мембране располагаются примерно 20000 наружных волосковых клеток НВК, которые в поперечном направлении составляют три ряда.НВК поддерживаются тремя рядами опорных клеток Дейтерса, нижние, закругленные концы НВК не доходят до основной мембраны. Кнаружи от НВК располагаются несколько рядов опорных клеток Гензена и цилиндрической формы опорных клеток Клаудиуса, которые доходят до сосудистой полоски наружной костной стенки завитков улитки.

Рис. 10 Общий вид наружных волосковых клеток.

Наружные волосковые клетки имеют удлиненную форму цилиндра, из утолщенной верхней поверхности НВК выходит от 40 до 150 стереоцилий, или волосков в виде буквы W, основание которой обращено к наружной, костной стенке улиткового хода, и омывается эндолимфой.

Наружные волосковые клетки содержат сократительные белки, благодаря чему являются источником звуковых колебаний. Движения наружных волосковых клеток возникают как спонтанно, так и в ответ на звуковое раздражение из наружного слухового прохода и вызывают колебания барабанной перепонки. Такой процесс получил название отоакустической эмиссии, которую исследуют с помощью чувствительного микрофона, в наружном слуховом проходе. Отсутствие колебаний НВК указывает на глухоту, которую можно зафиксировать у новорожденного на второй день после родов, что очень ценно для их реабилитации. Наружные волосковые клетки соединяют между собой звуки, создают комплексное звуковое ощущение, воспринимают слабые, тихие звуки, наиболее ранимы и быстро повреждаются

Наружные и внутренние волосковые клетки покрыты сетчатой мембраной , через отверстия которой выходят стереоцилии, то есть сетчатая мембрана, сверху удерживает волосковые клетки, а столбовые клетки, расположенные вокруг волосковых клеток, соединяют ее с основной мембраной снизу, создавая прочное объединение. Сетчатая мембрана изолирует спиральный орган от эндолимфы, тогда как стереоцилии омываются эндолимфой.

Поверх стереоцилий располагается покровная мембрана , она так же как основная, похожа на закрученную по спирали ленту, среди ее волокнистой, почти желеобразной структуры находятся прочные коллагеновые (белковое вещество) волокна, которые помогают ей сохранять положение мембраны. Покровная мембрана начинается от верхнего края костной спиральной пластинки, располагается над волосковыми клетками по всему улитковому протоку, и не закреплена снаружи, а свободно плавает в эндолимфе. Именно это обстоятельство дает возможность покровной мембране совершать движения относительно стереоцилий волосковых клеток, которые к ней примыкают. Наибольшее воздействие покровная мембрана оказывает на НВК, поскольку снаружи она не закреплена. В результате постоянного воздействия покровной мембраны на стереоцилии волосковых клеток во время прохождения звуковой волны, стереоцилии деформируются, что приводит к образованию нервного импульса. Нервный потенциал или импульс поступает на базилярную мембрану и на нервное волокно в ней проходящее, после чего направляется к нервным клеткам улитки, а затем и вступает в слуховой нерв.

Волосковые клетки имеют ядро, в клетках сконцентрированы митохондрии и комплекс Гольджи, которые способствуют интенсивному обмену в клетках и тем самым способствуют преобразованию механической энергии звуковой волны в энергию нервного импульса.

Поэтому «восприятию» ребенка нельзя научить, можно воспользоваться остаточным слухом в виде «восприятия» и научить прислушиваться, узнавать знакомые слова.



Мы закончили рассмотрение периферического отдела слуховой системы, в котором различают две части: звукопроведение и звуковосприятие. Звукопроведение в наружном и среднем ухе происходит в воздушной среде, а во внутреннем ухе звуковые волны передаются жидкостью, скорость распространения которой превышает воздушную в четыре раза, и составляет 1500 м /сек. Звуковосприятие это физико-химический процесс, происходящий в спиральном органе, благодаря которому звуковая волна трансформируется в нервный импульс. Из спирального органа нервный импульс проходит в структуры мозга, которые называются проводниковый и корковый отделы.

Рис.8 Общая схема строения слуховой системы, включая строение волосковых клеток. Balanse organ – вестибулярный орган, Auditore nerve – слуховой нерв, Cochlea – улитка, Ear drum – барабанная перепонка, Tectorial membrane – покровная мембрана, Hair bundle – внутренняя волосковая клетка, Pillar cells – столбовые клетки, Nerve fibres – нервные волокна, Basilar membrane – базилярная мембрана, Circumferential filaments – переплетенные волокна, Membrane proteins – белковая мембрана.

На расположенной спиралевидно вдоль всего хода улиткового протока базилярной мембране лежит орган слуха - спираль­ный орган или кортиев орган, organum spirale seu organum Corti. У внут­ренней стороны кортиева органа надкост­ница верхней поверхности костной спи­ральной пластинки утолщена и образует

возвышение - спиральный лимб, limbus spiralis, который вдается в просвет улитково­го протока. От верхней губы лимба тянется тонкая желеобразная покровная мембра­на, membrana tectoria, лежащая над волосковыми клетками кортиева органа и со­прикасающаяся с ними. Кортиев орган состоит из одного ряда внутренних волоско-вых клеток, трех рядов наружных волосковых клеток, опорных клеток, а также стол­бовых клеток. Между наружными волосковыми клетками расположены опорные клетки Дейтерса, а кнаружи от них-опорные клетки Гензена и Клаудиуса. Столбовые клет­ки образуют туннель кортиева органа.Базилярная мембрана состоит из 2400 поперечно расположенных волокон -слу­ховых струн. Они наиболее длинные и толстые у верхушки улитки, а короткие и тон­кие - у ее основания. Волокна улиткового нерва контактируют с внутренними (4000) и наружными (20 000) волосковыми клетками, которые, как и в вестибулярном аппа­рате являются втрричночувствующими механорецепторными клетками, имеющими около 50 коротких волосков - стереоцилий и один длинный - киноцилию. Волоско-вые клетки улиткового протока омываются особой жидкостью - кортилимфой.Волосковые клетки синаптически связаны с периферическими отростками би­полярных клеток спирального ганглия, ganglion spirale, расположенного в спираль ном канале костной улитки (I нейрон). Центральные отростки биполярных нейро­нов составляют улитковый корешок, radix cochlearis, преддверно-улиткового нерве (VIII), проходящего во внутреннем слуховом проходе височной кости. В мостомоз-жечковом углу волокна улиткового корешка вступают в вещество мозга (моста) v заканчиваются в латеральном углу ромбовидной ямки на клетках вентральногс улиткового ядра, nucl.cochlearis ventralis, и дорсального улиткового ядра, nucl cochlearis dorsalis, (II нейрон).

2. Острый отит при инфекционных заболеваниях - гриппе, скарлатине, кори,
туберкулезе.

1. Наиболее тяжело – у больных корью и скарлатиной. Часто двусторонний процесс. Гематогенный путь распространения. Патогенез сопровождается некрозом слизистой на больших поверхностях, некрозом слуховых косточек. Были описаны секвестрации лабиринта.

2. При туберкулезе – особенность: при осмотре барабанной перепонки часто видно несколько перфораций.

3. Гриппозный отит – большие деструктивные изменения в среднем ухе, сосцевидном отростке. Скопление геморрагического экссудата. Тяжелое течение.

Симптомы:

1. жалобы на боль в среднем ухе, сильные стреляющие боли в области уха и околоушной области (вторичный тригеминит). Иррадиация в зубы, висок, в половину головы. Глотание и жевание усиливают боли. Ночью особенно больно, так как активируется вегетативная нервная система,

2. чувство заложенности уха и снижение слуха, тяжесть в ухе, нарушение звукопроведения. При аудиометрии и в пробе с камертоном – нарушение звукопроведения. При далеко зашедшем воспалении (во внутреннее ухо) – нарушение звуковосприятия. Жидкость давит на лабиринтные окна – кружится голова,

3. общая симптоматика – температура до 39-40, интоксикация, головная боль, изменения в общем анализе крови (лейкоцитоз, сдвиг влево, увеличение СОЭ).

Перфорация чаще возникает в нижних квадрантах барабанной перепонки, там имеется пульсация гнойного содержимого.



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения