Подпишись и читай
самые интересные
статьи первым!

Зрительный анализатор человека строение и функции. Строение и работа зрительного анализатора человека

У большинства людей понятие «зрение» ассоциируется с глазами. На самом деле глаза – это только часть сложного органа, именуемого в медицине зрительный анализатор. Глаза являются лишь проводником информации извне к нервным окончаниям. А сама способность видеть, различать цвета, размеры, формы, расстояние и движение обеспечивается именно зрительным анализатором – системой сложной структуры, которая включает несколько отделов, взаимосвязанных между собой.

Знание анатомии зрительного анализатора человека позволяет правильно диагностировать различные заболевания, определять их причину, выбирать правильную тактику лечения, проводить сложные хирургические операции. У каждого из отделов зрительного анализатора есть свои функции, но между собой они тесно взаимосвязаны. Если хоть какая-то из функций органа зрения нарушается, это неизменно сказывается на качестве восприятия действительности. Восстановить его можно, только зная, где скрыта проблема. Вот почему так важно знание и понимание физиологии глаза человека.

Строение и отделы

Строение зрительного анализатора сложное, но именно благодаря этому мы можем воспринимать окружающий мир настолько ярко и полно. Состоит он из таких частей:

Работу зрительного анализатора по своей сути можно сравнить с системой телевидения: антенной, проводами и телевизором

Основные функции зрительного анализатора – это восприятие, проведение и обработка зрительной информации. Анализатор глаза не работает в первую очередь без глазного яблока – это и есть его периферическая часть, на которую приходятся основные зрительные функции.

Схема строения непосредственного глазного яблока включает 10 элементов:

  • склера – это наружная оболочка глазного яблока, сравнительно плотная и непрозрачная, в ней есть сосуды и нервные окончания, она соединяется в передней части с роговицей, а в задней – с сетчаткой;
  • сосудистая оболочка – обеспечивает провод питательных веществ вместе с кровью к сетчатке глаза;
  • сетчатка – этот элемент, состоящий из клеток фото-рецепторов, обеспечивает чувствительность глазного яблока к свету. Фоторецепторы бывают двух видов – палочки и колбочки. Палочки отвечают за периферическое зрение, они отличаются высокой светочувствительностью. Благодаря клеткам-палочкам, человек способен видеть в сумерках. Функциональная особенность колбочек совершенно другая. Они позволяют глазу воспринимать различные цвета и мелкие детали. Колбочки отвечают за центральное зрение. Оба вида клеток вырабатывают родопсин – вещество, которое преобразует световую энергию в электрическую. Именно ее способен воспринимать и расшифровывать корковый отдел головного мозга;
  • роговица – это прозрачная часть в переднем отделе глазного яблока, здесь происходит преломление света. Особенность роговицы состоит в том, что в ней совсем нет кровеносных сосудов;
  • радужная оболочка – оптически это самая яркая часть глазного яблока, здесь сосредоточен пигмент, отвечающий за цвет глаз человека. Чем его больше и чем ближе он к поверхности радужки, тем темнее будет цвет глаз. Структурно радужная оболочка представляет собой мышечные волокна, которые отвечают за сокращение зрачка, который, в свою очередь, регулирует количество света, передающегося к сетчатке;
  • ресничная мышца – иногда ее называют ресничным пояском, главная характеристика этого элемента – регулировка хрусталика, благодаря чему взгляд человека может быстро сфокусироваться на одном предмете;
  • хрусталик – это прозрачная линза глаза, главная его задача – фокусировка на одном предмете. Хрусталик эластичен, это свойство усиливается окружающими его мышцами, благодаря чему человек может отчетливо видеть и вблизи, и вдали;
  • стекловидное тело – это прозрачная гелеобразная субстанция, заполняющая глазное яблоко. Именно оно формирует его округлую, устойчивую форму, а также пропускает свет от хрусталика к сетчатке;
  • зрительный нерв – это основная часть проводящего пути информации от глазного яблока в области коры головного мозга, обрабатывающие ее;
  • желтое пятно – это участок максимальной остроты зрения, он расположен напротив зрачка над местом входа зрительного нерва. Свое название пятно получило за большое содержание пигмента желтого цвета. Примечательно, что некоторые хищные птицы, отличающиеся острым зрением, имеют целых три желтых пятна на глазном яблоке.

Периферия собирает максимум зрительной информации, которая затем через проводниковый отдел зрительного анализатора передается к клеткам коры головного мозга для дальнейшей обработки.


Вот так схематично выглядит строение глазного яблока в разрезе

Вспомогательные элементы глазного яблока

Глаз человека подвижен, что позволяет улавливать большое количество информации со всех направлений и быстро реагировать на раздражители. Подвижность обеспечивается мышцами, охватывающими глазное яблоко. Всего их три пары:

  • Пара, обеспечивающая движение глаза вверх и вниз.
  • Пара, отвечающая за движение влево и вправо.
  • Пара, благодаря которой глазное яблоко может вращаться относительно оптической оси.

Этого достаточно, чтобы человек мог смотреть в самых разных направлениях, не поворачивая головы, и быстро реагировать на зрительные раздражители. Движение мышц обеспечивается глазодвигательными нервами.

Также к вспомогательным элементам зрительного аппарата относятся:

  • веки и ресницы;
  • конъюнктива;
  • слезный аппарат.

Веки и ресницы выполняют защитную функцию, образуя физическую преграду для проникновения инородных тел и веществ, воздействия слишком яркого света. Веки представляют собой эластичные пластины из соединительной ткани, покрытые снаружи кожей, а изнутри – конъюнктивой. Конъюнктива – это слизистая оболочка, выстилающая сам глаз и веко изнутри. Ее функция тоже защитная, но обеспечивается она за счет выработки специального секрета, увлажняющего глазное яблоко и образующая невидимую естественную пленку.


Зрительная система человека устроена сложно, но вполне логично, каждый элемент несет определенную функцию и тесно связан с другими

Слезный аппарат – это слезные железы, от которых по протокам слезная жидкость выводится в конъюнктивальный мешок. Железы парные, расположены они в уголках глаз. Также во внутреннем уголке глаза находится слезное озерцо, куда стекает слеза после того, как омыла наружную часть глазного яблока. Оттуда слезная жидкость переходит в слезно-носовой проток и стекает в нижние отделы носовых проходов.

Это естественный и постоянный процесс, никак не ощущаемый человеком. Но когда слезной жидкости вырабатывается слишком много, слезно-носовой проток не в состоянии ее принять и переместить всю одновременно. Жидкость переливается через край слезного озерца – образуются слезы. Если же, наоборот, по каким-то причинам слезной жидкости вырабатывается слишком мало или же она не может продвигаться через слезные протоки по причине их закупорки, возникает сухость глаза. Человек ощущает сильный дискомфорт, боль и резь в глазах.

Как происходит восприятие и передача зрительной информации

Чтобы понять, как же работает зрительный анализатор, стоит представить себе телевизор и антенну. Антенна – это глазное яблоко. Оно реагирует на раздражитель, воспринимает его, преобразует в электрическую волну и передает к головному мозгу. Осуществляется это посредством проводникового отдела зрительного анализатора, состоящего из нервных волокон. Их можно сравнить с телевизионным кабелем. Корковый отдел – это телевизор, он обрабатывает волну и расшифровывает ее. В результате получается привычная для нашего восприятия зрительная картинка.


Зрение человека – это намного сложнее и больше, чем просто глаза. Это сложный многоступенчатый процесс, осуществляемый, благодаря слаженной работе группы различных органов и элементов

Подробнее стоит рассмотреть проводниковый отдел. Он состоит из перекрещенных нервных окончаний, то есть информация от правого глаза идет к левому полушарию, а от левого – к правому. Почему именно так? Все просто и логично. Дело в том, что для оптимальной расшифровки сигнала от глазного яблока к корковому отделу его путь должен быть максимально коротким. Участок в правом полушарии мозга, ответственный за расшифровку сигнала, расположен ближе к левому глазу, чем к правому. И наоборот. Вот почему сигналы передаются по перекрещенным путям.

Перекрещенные нервы далее образуют так называемый зрительный тракт. Здесь информация от разных частей глаза передается для расшифровки к разным частям головного мозга, чтобы сформировалась четкая зрительная картинка. Мозг уже может определить яркость, степень освещенности, цветовую гамму.

Что происходит дальше? Уже почти окончательно обработанный зрительный сигнал поступает в корковый отдел, осталось только извлечь из него информацию. В этом и заключаются основные функции зрительного анализатора. Здесь осуществляются:

  • восприятие сложных зрительных объектов, например, печатного текста в книге;
  • оценка размеров, формы, удаленности предметов;
  • формирование восприятия перспективы;
  • различие между плоскими и объемными предметами;
  • объединение всей полученной информации в целостную картинку.

Итак, благодаря слаженной работе всех отделов и элементов зрительного анализатора, человек способен не только видеть, но и понимать увиденное. Те 90% информации, которую мы получаем из окружающего мира через глаза, поступает к нам именно таким многоступенчатым путем.

Как изменяется зрительный анализатор с возрастом

Возрастные особенности зрительного анализатора неодинаковы: у новорожденного он еще не сформирован до конца, младенцы не могут фокусировать взгляд, быстро реагировать на раздражители, в полной мере обрабатывать полученную информацию, чтобы воспринимать цвет, размер, форму, удаленность предметов.


Новорожденные дети воспринимают мир в перевернутом виде и в черно-белом цвете, так как формирование зрительного анализатора у них еще полностью не завершено

К 1 году зрение ребенка становится почти таким же острым, как у взрослого человека, что можно проверить по специальным таблицам. Но полное завершение формирования зрительного анализатора наступает только к 10–11 годам. До 60 лет в среднем, при условии соблюдения гигиены органов зрения и профилактики патологий, зрительный аппарат работает исправно. Затем начинается ослабление функций, что обусловлено естественным износом мышечных волокон, сосудов и нервных окончаний.

Получать трехмерное изображение мы можем, благодаря тому, что у нас есть два глаза. Выше уже говорилось о том, что правый глаз передает волну к левому полушарию, а левый наоборот, к правому. Далее обе волны соединяются, направляются к нужным отделам для расшифровки. При этом каждый глаз видит свою «картинку», и только при правильном сопоставлении они дают четкое и яркое изображение. Если же на каком-то из этапов происходит сбой, происходит нарушение бинокулярного зрения. Человек видит сразу две картинки, причем они различные.


Сбой на любом этапе передачи и обработки информации в зрительном анализаторе приводит к различным нарушениям зрения

Зрительный анализатор не напрасно сравнивают с телевизором. Изображение предметов, после того как они пройдут преломление на сетчатке, поступает к головному мозгу в перевернутом виде. И только в соответствующих отделах преобразуется в более удобную для восприятия человека форму, то есть возвращается «с головы на ноги».

Есть версия, что новорожденные дети видят именно так – в перевернутом виде. К сожалению, рассказать об этом сами они не могут, а проверить теорию с помощью специальной аппаратуры пока что невозможно. Скорее всего они воспринимают зрительные раздражители так же, как и взрослые люди, но поскольку зрительный анализатор сформирован еще не до конца, полученная информация не обрабатывается и адаптируется полностью для восприятия. Малыш просто не справится с такими объемными нагрузками.

Таким образом, строение глаза сложное, но продуманное и почти совершенное. Сначала свет попадает на периферическую часть глазного яблока, проходит через зрачок к сетчатке, преломляется в хрусталике, затем преобразуется в электрическую волну и проходит по перекрещенным нервным волокнам к коре головного мозга. Здесь происходит расшифровка и оценка полученной информации, а затем ее декодирование в понятную для нашего восприятия зрительную картинку. Это, действительно, схоже с антенной, кабелем и телевизором. Но намного филигранней, логичней и удивительней, ведь это создала сама природа, и под этим сложным процессом на самом деле подразумевается то, что мы называем зрением.

Глаза - орган зрения - можно сравнить с окном в окружающий мир. Примерно 70% всей информации мы получаем с помощью зрения, например о форме, размерах, цвете предметов, расстоянии до них и др. Зрительный анализатор контролирует двигательную и трудовую деятельность человека; благодаря зрению мы можем по книгам и экранам компьютеров изучать опыт, накопленный человечеством.

Орган зрения состоит из глазного яблока и вспомогательного аппарата. Вспомогательный аппарат - это брови, веки и ресницы, слезная железа, слезные канальцы, глазодвигательные мышцы, нервы и кровеносные сосуды

Брови и ресницы защищают глаза от пыли. Кроме того, брови отводят стекающий со лба пот. Все знают, что человек постоянно моргает (2-5 движений веками в 1 мин). Но знают ли зачем? Оказывается, поверхность глаза в момент моргания смачивается слезной жидкостью, предохраняющей ее от высыхания, заодно при этом очищаясь от пыли. Слезную жидкость вырабатывает слезная железа. Она содержит 99% воды и 1 % соли. В сутки выделяется до I г слезной жидкости, она собирается во внутреннем углу глаза, а затем попадает в слезные канальцы, которые выводят ее в носовую полость. Если человек плачет, слезная жидкость не успевает уйти по канальцам в носовую полость. Тогда слезы перетекают через нижнее веко и каплями стекают по лицу.

Глазное яблоко располагается в углублении черепа - глазнице. Оно имеет шаровидную форму и состоит из внутреннего ядра, покрытого тремя оболочками: наружной - фиброзной, средней - сосудистой и внутренней - сетчатой. Фиброзная оболочка подразделяется на заднюю непрозрачную часть - белочную оболочку, или склеру, и переднюю прозрачную - роговицу. Роговица представляет собой выпукло-вогнутую линзу, через которую свет проникает внутрь глаза. Сосудистая оболочка расположена под склерой. Ее передняя часть называется радужкой, в ней содержится пигмент, определяющий цвет глаз. В центре радужной оболочки находится небольшое отверстие - зрачок, который рефлекторно с помощью гладких мышц может расширяться или сужаться, пропуская в глаз необходимое количество света.

Собственно сосудистая оболочка пронизана густой сетью кровеносных сосудов, питающих глазное яблоко. Изнутри к сосудистой оболочке прилежит слой пигментных клеток, поглощающих свет, поэтому внутри глазного яблока свет не рассеивается, не отражается.

Непосредственно за зрачком находится двояковыпуклый прозрачный хрусталик. Он может рефлекторно менять свою кривизну, обеспечивая четкое изображение на сетчатке - внутренней оболочке глаза. В сетчатке располагаются рецепторы: палочки (рецепторы сумеречного света, которые отличают светлое от темного) и колбочки (они обладают меньшей светочувствительностью, но различают цвета). Большинство колбочек размещается на сетчатке напротив зрачка, в желтом пятне. Рядом с этим пятном находится место выхода зрительного нерва, здесь нет рецепторов, поэтому его называют слепым пятном.

Внутри глаз заполнен прозрачным и бесцветным стекловидным телом.

Восприятие зрительных раздражений . Свет попадает в глазное яблоко через зрачок. Хрусталик и стекловидное тело служат для проведения и фокусирования световых лучей на сетчатку. Шесть глазодвигательных мышц обеспечивают такое положение глазного яблока, чтобы изображение предмета попадало бы точно на сетчатку, на ее желтое пятно.

В рецепторах сетчатки происходит преобразование света в нервные импульсы, которые по зрительному нерву передаются в головной мозг через ядра среднего мозга (верхние бугры четверохолмия) и промежуточного мозга (зрительные ядра таламуса) - в зрительную зону коры больших полушарий, расположенную в затылочной области. Начавшееся в сетчатке восприятие цвета, формы, освещенности предмета, его деталей, заканчивается анализом в зрительной зоне коры. Здесь собирается вся информация, она расшифровывается и обобщается. В результате этого складывается представление о предмете.

Нарушения зрения. Зрение людей меняется с возрастом, так как хрусталик теряет эластичность, способность менять свою кривизну. В этом случае изображение близко расположенных предметов расплывается - развивается дальнозоркость. Другой дефект зрения - близорукость, когда люди, наоборот, плохо видят удаленные предметы; она развивается после длительного напряжения, неправильного освещения. Близорукость часто возникает у детей школьного возраста из-за неправильного режима труда, плохой освещенности рабочего места. При близорукости изображение предмета фокусируется перед сетчаткой, а при дальнозоркости - позади сетчатки и поэтому воспринимается как расплывчатое. Причиной этих дефектов зрения могут быть и врожденные изменения глазного яблока.

Близорукость и дальнозоркость исправляются специально подобранными очками или линзами.

  • Зрительный анализатор человека обладает потрясающей чувствительностью. Так, мы можем различить освещенное изнутри отверстие в стене диаметром всего 0,003 мм. Тренированный человек (причем у женщин это получается гораздо лучше) может различать сотни тысяч цветовых оттенков. Зрительному анализатору достаточно всего 0,05 секунды для распознавания объекта, который попал в поле зрения.

Проверьте свои знания

  1. Что такое анализатор?
  2. Как устроен анализатор?
  3. Назовите функции вспомогательного аппарата глаза.
  4. Как устроено глазное яблоко?
  5. Какие функции выполняют зрачок и хрусталик?
  6. Где располагаются палочки и колбочки, в чем заключаются их функции?
  7. Как работает зрительный анализатор?
  8. Что такое слепое пятно?
  9. Как возникают близорукость и дальнозоркость?
  10. Каковы причины нарушения зрения?

Подумайте

Почему говорят, что глаз смотрит, а мозг видит?

Орган зрения образован глазным яблоком и вспомогательным аппаратом. Глазное яблоко может двигаться благодаря шести глазодвигательным мышцам. Зрачок- небольшое отверстие, через которое в глаз попадает свет. Роговица и хрусталик являются преломляющим аппаратом глаза. Рецепторы (светочувствительные клетки - палочки, колбочки) находятся в сетчатке.

ДОКЛАД НА ТЕМУ:

ФИЗИОЛОГИЯ ЗРИТЕЛЬНОГО АНАЛИЗАТОРА.

СТУДЕНТКИ: Путилина М., Аджиева А.

Преподаватель: Бунина Т. П.

Физиология зрительного анализатора

Зрительный анализатор (или зрительная сенсорная система) – важнейший из органов чувств человека и большинства высших позвоночных животных. Он дает более 90% информации, идущей к мозгу от всех рецепторов. Благодаря опережающему эволюционному развитию именно зрительных механизмов мозг хищных животных и приматов претерпел резкие изменения и достиг значительного совершенства. Зрительное восприятие – многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза и возбуждения фоторецепторов и заканчивающийся принятием высшими отделами зрительного анализатора, локализованными в коре мозга, решения о наличии в поле зрения того или иного зрительного образа.

Структуры зрительного анализатора:

    Глазное яблоко.

    Вспомогательный аппарат.

Строение глазного яблока:

Ядро глазного яблока окружают три оболочки: наружная, средняя и внутренняя.

    Наружная - очень плотная фиброзная оболочка глазного яблока (tunica fibrosa bulbi), к которой прикрепляются наружные мышцы глазного яблока, выполняет защитную функцию и благодаря тургору обусловливает форму глаза. Она состоит из передней прозрачной части - роговицы, и задней непрозрачной части белесоватого цвета - склеры.

    Средняя, или сосудистая, оболочка глазного яблока играет важную роль в обменных процессах, обеспечивая питание глаза и выведение продуктов обмена. Она богата кровеносными сосудами и пигментом (богатые пигментом клетки хориоидеи препятствуют проникновению света через склеру, устраняя светорассеяние). Она образована радужкой, ресничным телом и собственно сосудистой оболочкой. В центре радужки имеется круглое отверстие - зрачок, через которое лучи света проникают внутрь глазного яблока и достигают сетчатки (величина зрачка изменяется в результат взаимодействия гладких мышечных волокон - сфинктера и дилататора, заключённых в радужке и иннервируемых парасимпатическим и симпатическим нервами). Радужка содержит различное количество пигмента, от которого зависит её окраска - «цвет глаз».

    Внутренняя, или сетчатая, оболочка глазного яблока (tunica interna bulbi), - сетчатка - рецепторная часть зрительного анализатора, здесь происходит непосредственное восприятие света, биохимические превращения зрительных пигментов, изменение электрических свойств нейронов и передача информации в центральную нервную систему. Сетчатка состоит из 10 слоев:

    Пигментный;

    Фотосенсорный;

    Наружная пограничная мембрана;

    Наружный зернистый слой;

    Наружный сетчатый слой;

    Внутренний зернистый слой;

    Внутренний сетчатый;

    Слой ганглиозных клеток;

    Слой волокон зрительного нерва;

    Внутренняя пограничная мембрана

Центральная ямка (желтое пятно). Область сетчатки, в которой находятся одни колбочки (цветочувствительные фоторецепторы); в связи с этим обладает сумеречной слепотой (гемеролопией); для этой области характерны миниатюрные рецептивные поля (одна колбочка – один биполяр – одна ганглиозная клетка), и как следствие, максимальная острота зрения

С функциональной точки зрения оболочки глаза и её производные подразделяют на три аппарата: рефракционный (светопреломляющий) и аккомодационный (приспособительный), формирующие оптическую систему глаза, и сенсорный (рецепторный) аппарат.

Светопреломляющий аппарат

Светопреломляющий аппарат глаза представляет собой сложную систему линз, формирующую на сетчатке уменьшенное и перевёрнутое изображение внешнего мира, включает в себя роговицу, камерную влагу - жидкости передней и задней камер глаза, хрусталик, а также стекловидное тело, позади которого лежит сетчатка, воспринимающая свет.

Хруста́лик (лат. lens) - прозрачное тело, расположенное внутри глазного яблока напротив зрачка; являясь биологической линзой, хрусталик составляет важную часть светопреломляющего аппарата глаза.

Хрусталик представляет собой прозрачное двояковыпуклое округлое эластичное образование, циркулярно фиксированное к цилиарному телу. Задняя поверхность хрусталика прилегает к стекловидному телу, спереди от него находятся радужка и передняя и задняя камеры.

Максимальная толщина хрусталика взрослого человека примерно 3,6-5 мм (в зависимости от напряжения аккомодации), его диаметр около 9-10 мм. Радиус кривизны передней поверхности хрусталика в покое аккомодации равен 10 мм, а задней - 6 мм, при максимальном напряжении аккомодации передний и задний радиус сравниваются, уменьшаясь до 5,33 мм.

Показатель преломления хрусталика неоднороден по толщине и в среднем составляет 1,386 или 1,406 (ядро) также в зависимости от состояния аккомодации.

В покое аккомодации преломляющая сила хрусталика составляет среднем 19,11 диоптрий, при максимальном напряжении аккомодации - 33,06 дптр.

У новорождённых хрусталик почти шаровидный, имеет мягкую консистенцию и преломляющую силу до 35,0 дптр. Дальнейший рост его происходит, в основном, за счет увеличения диаметра.

Аккомодационный аппарат

Аккомодационный аппарат глаза обеспечивает фокусировку изображения на сетчатке, а также приспособление глаза к интенсивности освещения. Он включает в себя радужку с отверстием в центре - зрачком - и ресничное тело с ресничным пояском хрусталика.

Фокусировка изображения обеспечивается за счёт изменения кривизны хрусталика, которая регулируется цилиарной мышцей. При увеличении кривизны хрусталик становится более выпуклым и сильнее преломляет свет, настраиваясь на видение близко расположенных объектов. При расслаблении мышцы хрусталик становится более плоским, и глаз приспосабливается для видения удалённых предметов. У других животных, в частности, головоногих, при аккомодации превалирует как раз изменение расстояния между хрусталиком и сетчаткой.

Зрачок представляет собой отверстие переменного размера в радужной оболочке. Он выполняет роль диафрагмы глаза, регулируя количество света, падающего на сетчатку. При ярком свете кольцевые мышцы радужки сокращаются, а радиальные расслабляются, при этом зрачок сужается, и количество света, попадающего на сетчатку уменьшается, это предохраняет её от повреждения. При слабом свете наоборот сокращаются радиальные мышцы, и зрачок расширяется, пропуская в глаз больше света.

цинновы связки (ресничные пояски). Отростки ресничного тела, направляются к капсуле хрусталика. При расслабленном состоянии гладкой мускулатуры ресничного тела оказывают максимальное растягивающее действие на капсулу хрусталика, в результате чего он максимально уплощен, а преломляющая его способность минимальна (это имеет место в момент рассматривания предметов, находящихся на большом удалении от глаз); в условиях сокращенного состояния гладкой мускулатуры ресничного тела имеет место обратная картина (при рассматривании близко расположенных от глаз предметов)

передняя и задняя камеры глаза соответственно, заполнены водянистой влагой.

Рецепторный аппарат зрительного анализатора. Структура и функции отдельных слоев сетчатки

Сетчатка представляет собой внутреннюю оболочку глаза, имеющую сложную многослойную структуру. Здесь расположены два вида различных по своему функциональному значению фоторецепторов – палочки и колбочки и несколько видов нервных клеток с их многочисленными отростками.

Под влиянием световых лучей в фоторецепторах происходят фотохимические реакции, состоящие в изменении светочувствительных зрительных пигментов. Это вызывает возбуждение фоторецепторов, и затем синоптическое возбуждение связанных с палочками и колбочками нервных клеток. Последние образуют собственно нервный аппарат глаза, который передает зрительную информацию в центры головного мозга и участвует в ее анализе и переработке.

ВСПОМОГАТЕЛЬНЫЙ АППАРАТ

Вспомогательный аппарат глаза включает защитные приспособления и мышцы глаза. К защитным приспособлениям относятся веки с ресницами, конъюнктива и слезный аппарат.

Веки представляют собой парные кожно-конъюктивные складки, прикрывающие спереди глазное яблоко. Передняя поверхность века покрыта тонкой, легко собирающейся в складки кожей, под которой лежит мышца века и которая на периферии переходит в кожу лба и лица. Задняя поверхность века выстлана конъюнктивой. Веки имеют передние края век, несущие ресницы и задние края век, переходящие в конъюнктиву.

Между верхними и нижними веками имеется щель век с медиальным и латеральным углами. У медиального угла щели век передний край каждого века имеет небольшое возвышение - слезный сосочек, на вершине которого точечным отверстием открывается слезный каналец. В толще век заложены хрящи, тесно сращенные с конъюнктивой и в значительной мере определяющие форму век. Медиальной и латеральной связками век эти хрящи укреплены к краю глазницы. В толще хрящей залегают довольно многочисленные (до 40) железы хряща, протоки которых открываются вблизи свободных задних краев обоих век. У лиц, работающих в пыльных цехах, часто наблюдается закупорка этих желез с последующим их воспалением.

Мышечный аппарат каждого глаза состоит из трех пар антагонистически действующих глазодвигательных мышц:

Верхней и нижней прямых,

Внутренней и наружной прямых,

Верхней и нижней косых.

Все мышцы, за исключением нижней косой, начинаются, кaк и мышцы, поднимающие верхнее веко, от сухожильного кольца, расположенного вокруг зрительного канала глазницы. Затем четыре прямые мышцы направляются, постепенно дивергируясь, кпереди и после прободения теноновой капсулы налетаются своими сухожилиями в склеру. Линии их прикрепления находятся на разном расстоянии от лимба: внутренней прямой - 5,5-5,75 мм, нижней - 6-6,6 мм, наружной - 6,9-7 мм, верхней - 7,7-8 мм.

Верхняя косая мышца от зрительного отверстия направляется к костно-сухожильному блоку, расположенному у верхневнутреннего угла глазницы и, перекинувшись через него, идет кзади и кнаружи в виде компактного сухожилия; прикрепляется к склере в верхненаружном квадранте глазного яблока на расстоянии 16 мм от лимба.

Нижняя косая мышца начинается от нижней костной стенки глазницы несколько латеральнее места входа в носослезный канал, идет кзади и кнаружи между нижней стенкой глазницы и нижней прямой мышцей; прикрепляется к склере на расстоянии 16 мм от лимба (нижненаружный квадрант глазного яблока).

Внутренняя, верхняя и нижняя прямые мышцы, а также нижняя косая мышца иннервируются веточками глазодвигательного нерва, наружная прямая - отводящего, верхняя косая - блокового.

При сокращении той или иной мышцы глаз совершает движение вокруг оси, которая перпендикулярна ее плоскости. Последняя проходит вдоль мышечных волокон и пересекает точку вращения глаза. Это означает, что у большинства глазодвигательных мышц (за исключением наружной и внутренней прямых мышц) оси вращения имеют тот или иной угол наклони по отношению к исходным координатным осям. Вследствие этого при сокращении таких мышц глазное яблоко совершает сложное движение. Так, например, верхняя прямая мышца при среднем положении глаза поднимает его кверху, ротирует кнутри и несколько поворачивает к носу. Вертикальные движения глаза будут увеличиваться по мере уменьшения угла расхождения между сагиттальной и мышечной плоскостями, т. е. при повороте глаза кнаружи.

Все движения глазных яблок подразделяют на сочетанные (ассоциированные, конъюгированные) и конвергентные (фиксация разноудаленных объектов за счет конвергенции). Сочетанные движения - это те, которые направлены в одну сторону: вверх, вправо, влево и т. д. Эти движения совершаются мышцами - синергистами. Так, например, при взгляде вправо в правом глазу сокращается наружная, а в левом - внутренняя прямые мышцы. Конвергентные движения реализуются посредством действия внутренних прямых мышц каждого глаза. Разновидностью их являются фузионные движения. Будучи очень мелкими, они осуществляют особо точную фиксационную установку глаз, благодаря чему создаются условия для беспрепятственного слияния в корковом отделе анализатора двух сетчаточных изображений в один цельный образ.

Восприятие света

Мы воспринимаем свет благодаря тому, что его лучи проходят через оптическую систему глаза. Там возбуждение обрабатывается и передаётся в центральные отделы зрительной системы. Сетчатка - это сложная оболочка глаза, содержащая несколько слоев клеток, различных по форме и функциям.

Первый (внешний) слой - пигментный, состоит из плотно расположенных эпителиальных клеток, содержащих чёрный пигмент фусцин. Он поглощает световые лучи, способствуя более четкому изображению предметов. Второй слой - рецепторный, образован светочувствительными клетками - зрительными рецепторами - фоторецепторами: колбочками и палочками. Они воспринимают свет и превращают его энергию в нервные импульсы.

Каждый фоторецептор состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, и внутреннего сегмента, содержащего ядро и митохондрии, обеспечивающие энергетические процессы в фоторецепторной клетке.

Электронно-микроскопические исследования выявили, что наружный сегмент каждой палочки состоит из 400-800 тонких пластинок, или дисков, диаметром около 6 мкм. Каждый диск представляет собой двойную мембрану, состоящую из мономолекулярных слоев липидов, находящихся между слоями молекул белка. С молекулами белка связан ретиналь, входящий в состав зрительного пигмента родопсина.

Наружный и внутренний сегменты фоторецепторной клетки разделены мембранами, через которые проходит пучок из 16-18 тонких фибрилл. Внутренний сегмент переходит в отросток, помощью которого фоторецепторная клетка передает возбуждение через синапс на контактирующую с ней биполярную нервную клетку.

У человека в глазу имеется около 6-7 млн. колбочек и 110-125 млн. палочек. Палочки и колбочки распределены в сетчатке неравномерно. Центральная ямка сетчатки (fovea centralis) содержит только колбочки (до 140000 колбочек на 1 мм2). По направлению к периферии сетчатки число колбочек уменьшается, а количество палочек возрастает. Периферия сетчатки содержит почти исключительно палочки. Колбочки функционируют в условиях ярой освещенности и воспринимают цвета; палочки являются рецепторами, воспринимающими световые лучи в условиях сумеречного зрения.

Раздражение различных участков сетчатки показывает, что различные цвета воспринимаются лучше всего при действии световых раздражителей на центральную ямку, где расположены почти исключительно колбочки. По мере удаления от центра сетчатки восприятие цвета становиться все хуже. Периферия сетчатки, где находятся исключительно палочки, не воспринимает цвета. Световая чувствительность колбочкового аппарата сетчатки во много раз меньше таковой элементов, связанных с палочками. Поэтому в сумерках в условиях малой освещенности, центральное колбочковое зрение резко понижено и преобладает периферическое палочковое зрение. Так как палочки не воспринимают цвета, то в сумерках человек цвета не различает.

Слепое пятно. Место входа зрительного нерва в глазное яблоко – сосок зрительного нерва – не содержит фоторецепторов и поэтому нечувствительно к свету; это так называемое слепое пятно. В существовании слепого пятна можно убедиться с помощью опыта Мариотта.

Мариотт проделывал опыт так: помещал двух вельмож на расстоянии 2 м друг против друга и просил их рассматривать одним глазом некоторую точку сбоку,- тогда каждому казалось, что у его визави нет головы.

Как это ни странно, но люди только в XVII веке узнали, что на сетчатке их глаз существует «слепое пятно», о котором никто раньше не думал.

Нейроны сетчатки. Кнутри от слоя фоторецепторных клеток в сетчатке расположен слой биполярных нейронов, к которым изнутри примыкает слой ганглиозных нервных клеток.

Аксоны ганглиозных клеток образуют волокна зрительного нерва. Таким образом, возбуждение, возникающее в фоторецепторе при действии света, попадает на волокна зрительного нерва через нервные клетки – биполярные и ганглиозные.

Восприятие изображения предметов

Чёткое изображение предметов на сетчатке обеспечиваются сложной уникальной оптической системой глаза, состоящей из роговицы, жидкостей передней и задней камер, хрусталика и стекловидного тела. Световые лучи проходят сквозь перечисленные среды оптической системы глаза и преломляются в них согласно законам оптики. Основное значение для преломления света в глазу имеет хрусталик.

Для чёткого восприятия предметов необходимо, чтобы их изображение всегда фокусировалось в центре сетчатки. Функционально глаз приспособлен для рассмотрения удалённых предметов. Однако люди могут чётко различать предметы, расположенные на разном расстоянии от глаза, благодаря способности хрусталика изменять свою кривизну, а соответственно и преломляющую силу глаза. Способность глаза приспосабливаться к ясному видению предметов, расположенных на разном расстоянии, называют аккомодацией. Нарушение аккомодационной способности хрусталика приводит к нарушению остроты зрения и возникновения близорукости или дальнозоркости.

Парасимпатические преганглионарные волокна исходят из ядра Вестфаля-Эдингера (висцеральная часть ядра III пары черепного нерва) и затем идут в составе III пары черепных нервов к ресничному ганглию, который лежит сразу позади глаза. Здесь преганглионарные волокна образуют синапсы с постганглионарными парасимпатическими нейронами, которые, в свою очередь, посылают волокна в составе ресничных нервов в глазное яблоко.

Эти нервы возбуждают: (1) ресничную мышцу, которая регулирует фокусирование хрусталиков глаз; (2) сфинктер радужной оболочки, сужающий зрачок.

Источником симпатической иннервации глаза являются нейроны боковых рогов первого грудного сегмента спинного мозга. Выходящие отсюда симпатические волокна входят в симпатическую цепочку и поднимаются к верхнему шейному ганглию, где они синаптически связываются с ганглионарными нейронами. Их постганглионарные волокна проходят вдоль поверхности каротидной артерии и далее вдоль более мелких артерий и достигают глаза.

Здесь симпатические волокна иннервируют радиальные волокна радужной оболочки (которые расширяют зрачок), а также некоторые внеглазные мышцы глаза (обсуждаются далее в связи с синдромом Горнера).

Механизм аккомодации, фокусирующий оптическую систему глаза, важен для поддержания высокой остроты зрения. Аккомодация осуществляется в результате сокращения или расслабления ресничной мышцы глаза. Сокращение этой мышцы увеличивает преломляющую силу хрусталика, а расслабление снижает ее.

Аккомодация хрусталика регулируется механизмом отрицательной обратной связи, который автоматически регулирует преломляющую силу хрусталика, чтобы достичь высочайшей степени остроты зрения. Когда глаза, сфокусированные на некотором отдаленном объекте, должны внезапно сфокусироваться на ближнем объекте, хрусталик обычно аккомодирует в течение менее 1 сек. Хотя точный механизм регуляции, вызывающий это быстрое и точное фокусирование глаза, не ясен, известны некоторые из его особенностей.

Во-первых, при внезапном изменении расстояния до точки фиксации преломляющая сила хрусталика изменяется в направлении, соответствующем достижению нового состояния фокуса, в пределах доли секунды. Во-вторых, разные факторы помогают изменить силу хрусталика в нужном направлении.

1. Хроматическая аберрация. Например, лучи красного цвета фокусируются слегка сзади по отношению к голубым лучам, поскольку голубые лучи сильнее преломляются хрусталиком, чем красные. Глаза, по-видимому, способны определить, какой из этих двух типов лучей лучше сфокусирован, и этот «ключ» передает информацию аккомодирующему механизму для увеличения или уменьшения силы хрусталика.

2. Конвергенция. При фиксации глаз на ближнем объекте глаза конвергируют. Нервные механизмы конвергенции одновременно посылают сигнал, увеличивающий преломляющую силу хрусталика глаза.

3. Ясность фокуса в глубине ямки по сравнению с ясностью фокуса по краям различна, поскольку центральная ямка лежит несколько глубже, чем остальная сетчатка. Предполагают, что это различие также дает сигнал, в каком направлении следует изменить силу хрусталика.

4. Степень аккомодации хрусталика все время слегка колеблется с частотой до 2 раз в секунду. При этом визуальное изображение становится яснее, когда колебание силы хрусталика изменяется в правильном направлении, и менее ясным, когда сила хрусталика изменяется в неправильном направлении. Это может дать быстрый сигнал к выбору правильного направления изменения силы хрусталика для обеспечения соответствующего фокуса. Области коры большого мозга, регулирующие аккомодацию, функционируют в тесной параллельной связи с областями, контролирующими фиксационные движения глаз.

При этом анализ зрительных сигналов осуществляется в областях коры, соответствующих полям 18 и 19 по Бродману, а двигательные сигналы к ресничной мышце передаются через претектальную зону ствола мозга, затем - через ядро Вестфаля-Эдингера и в итоге - по парасимпатическим нервным волокнам к глазам.

Фотохимические реакции в рецепторах сетчатки

В палочках сетчатки человека и многих животных содержится пигмент родопсин, или зрительный пурпур, состав, свойства и химические превращения которого подробно изучены в последние десятилетия. В колбочках найден пигмент йодопсин. В колбочках имеются также пигменты хлоролаб и эритролаб; первый из них поглощает лучи, соответствующие зеленой, а второй – красной части спектра.

Родопсин представляет собой высокомолекулярное соединение (молекулярная масса 270000), состоящее из ретиналя – альдегида витамина А и балка опсина. При действии кванта света происходит цикл фотофизических и фотохимических превращений этого вещества: ретиналь изомеризуется, его боковая цепь выпрямляется, связь ретиналя с белком нарушается, активируются ферментативные центры белковой молекулы. Конформационное изменение молекул пигмента активирует ионы Са2+, которые посредством диффузии достигают натриевых каналов, вследствие чего проводимость для Na+ снижается. В результате снижения натриевой проводимости возникает увеличение электроотрицательности внутри фоторецепторной клетки по отношению к внеклеточному пространству. После чего ретиналь отщепляется от опсина. Под влиянием фермента, названного редуктазой ретиналя, последний переходит в витамин А.

При затемнении глаз происходит регенерация зрительного пурпура, т.е. ресинтез родопсина. Для этого процесса необходимо, чтобы сетчатка получала цис-изомер витамина А, из которого образуется ретиналь. Если же витамин А в организме отсутствует, образование родопсина резко нарушается, что и приводит к развитию куринной слепоты.

Фотохимические процессы в сетчатке происходит весьма экономно, т.е. при действии даже очень яркого света расщепляется только небольшая часть имеющегося в палочках родопсина.

Структура йодопсина близка к родопсину. Йодопсин представляет собой также соединение ретиналя с белком опсином, который образуется в колбочках и отличается от опсина палочек.

Поглощение света родопсином и йодопсином различно. Йодопсин в наибольшей степени поглощает желтый свет с длиной волны около 560 нм.

Сетчатка представляет собой довольно сложную нейронную сеть с горизонтальными и вертикальными связями между фоторецепторами и клетками. Биполярные клетки сетчатки передают сигналы от фоторецепторов в слой ганглиозных клеток и к амакриновым клеткам (вертикальная связь). Горизонтальные и амакриновые клетки участвуют в горизонтальной передаче сигналов между соседними фоторецепторами и ганглиозными клетками.

Восприятие цвета

Восприятие цвета начинается с поглощения света колбочками - фоторецепторами сетчатки (фрагмент внизу). Колбочка отвечает на сигнал всегда одинаково, но ее активность передается двум различным типам нейронов, называемым биполярными клетками ON- и OFF-типа, которые, в свою очередь, соединены с ганглиозными клетками ON- и OFF-типа, а их аксоны несут сигнал в мозг - сначала в латеральное коленчатое тело, а оттуда далее в зрительную кору

Многоцветность воспринимается благодаря тому, что колбочки реагируют на определенный спектр света изолированно. Существует три типа колбочек. Колбочки первого типа реагируют преимущественно на красный цвет, второго - на зелёный и третьего - на синий. Эти цвета называют основными. Под действием волн различной длины колбочки каждого типа возбуждаются неодинаково.

Самой большой длине волны соответствует красный цвет, самой короткой – фиолетовый;

Цвета между красным и фиолетовым располагаются в известной последовательности красный- оранжевый – желтый – зеленый – голубой – синий – фиолетовый.

Наш глаз воспринимает длины волн только в диапозоне 400-700 нм. Фотоны с длиной волн выше 700 нм относятся к инфракрасному излучению, воспринимаются в форме тепла. Фотоны с длиной волн ниже 400 нм относят к ультрафиолетовому излучению, они из-за своей высокой энергии способны оказывать повреждающее действие на кожу и слизистые; после ультрафиолетового идет уже рентгеновское и гамма-излучение.

Вследствие этого каждая длина волны воспринимается как особый цвет. Например, когда мы смотрим на радугу, то самыми заметными для нас кажутся основные цвета (красный, зелёный, синий).

Оптическим смешением основных цветов можно получить остальные цвета и оттенки. Если все три типа колбочек возбуждаются одновременно и одинаково, возникает ощущение белого цвета.

Сигналы о цвете передаются по медленным волокнам ганглиозных клеток

В результате смешения сигналов, несущих информацию об окраске и форме, человек может увидеть то, чего нельзя было бы ожидать на основе анализа длины волны света, отраженного от предмета, что наглядно демонстрируют иллюзии.

Зрительные пути:

Аксоны ганглиозных клеток дают начало зрительному нерву. Правый и левый зрительные нервы сливаются у основания черепа, образуя перекрест, где нервные волокна, идущие от внутренних половин обеих сетчаток, пересекаются и переходят на противоположную сторону. Волокна, идущие от наружных половин каждой сетчатки объединяются вместе с перекрещенным пучком аксонов из контралатерального зрительного нерва, образуя зрительный тракт. Зрительный тракт заканчивается в первичных центрах зрительного анализатора, к которым относятся латеральные коленчатые тела, верхние бугорки четверохолмия и претектальная область ствола мозга.

Латеральные коленчатые тела являются первой структурой ЦНС, где происходит переключение импульсов возбуждения на пути между сетчаткой и корой большого мозга. Нейроны сетчатки и латерального коленчатого тела производят анализ зрительных стимулов, оценивая их цветовые характеристики, пространственный контраст и среднюю освещенность в различных участках поля зрения. В латеральных коленчатых телах начинается бинокулярное взаимодействие от сетчатки правого и левого глаза.

У человека есть удивительный дар, который он не всегда ценит, — возможность видеть. Человеческий глаз способен различать мелкие предметы и малейшие оттенки, при этом видеть не только днем, но и ночью. Специалисты утверждают, что с помощью зрения мы узнает от 70 до 90 процентов всей информации. Многие произведения искусства не были бы возможны при отсутствии глаз.

Поэтому разберемся подробнее, зрительный анализатор – что это такое, какие он выполняет функции, какое имеет строение?

Составляющие зрения и их функции

Начнем с рассмотрения строения зрительного анализатора, состоящего из:

  • глазного яблока;
  • проводящих путей — по ним картинка, зафиксированная глазом, подается в подкоровые центры, а потом и в кору мозга.

Поэтому в целом выделяют три отдела зрительного анализатора:

  • периферическая – глаза;
  • проводниковая – зрительный нерв;
  • центральная – зрительная и подкорковая зоны коры головного мозга.

Зрительный анализатор еще называют зрительной секреторной системой. Глаз включает в себя глазницу, а также вспомогательный аппарат.

Центральная часть находится в основном в затылочной части мозговой коры. Вспомогательный аппарат глаза представляет собой систему защиты и движения. В последнем случае внутренняя часть век имеет слизистую оболочку, называемую конъюнктивой. Защитная система включает нижнее и верхнее веко с ресницами.

Пот с головы спускается вниз, но не попадает в глаза за счет существования бровей. В слезах есть лизоцим, который убивает вредоносные микроорганизмы, попадающие в глаза. Моргание век способствует регулярному увлажнению яблока, после чего слезы спускаются ближе к носу, где попадают в слезной мешок. Дальше они переходят в полость носа.

Глазное яблоко двигается постоянно, для чего предусмотрено 2 косые и 4 прямые мышцы. У здорового человека оба глазных яблока перемещаются в одном направлении.

Диаметр органа составляет 24 мм, а его масса – около 6-8 г. Яблоко располагается в глазнице, сформированной костями черепа. Есть три оболочки: сетчатка, сосудистая и наружная.

Наружная

Внешняя оболочка имеет роговицу и склеру. В первой нет кровеносных сосудов, однако имеет множество нервных окончаний. Питание осуществляется благодаря межклеточной жидкости. Роговица пропускает свет, а также выполняет защитную функцию, предотвращая повреждение внутренности глаза. Она имеет нервные окончания: в результате попадания на нее даже небольшой пыли появляются режущие боли.

Склера имеет либо белый, либо голубоватый цвет. К ней фиксируются глазодвительные мышцы.

Средняя

В средней оболочке можно выделить три части:

  • сосудистая оболочка, находящаяся под склерой, имеет множество сосудов, поставляет кровь для сетчатки;
  • ресничное тело контактирует с хрусталиком;
  • радужка – зрачок реагирует на интенсивность света, который попадает на сетчатку (расширяется при слабом, сужается при сильном освещении).

Внутренняя

Сетчатка – мозговая ткань, которая позволяет реализовать функцию зрения. Она выглядит как тонкая оболочка, прилегающая по всей поверхности к сосудистой оболочке.

Глаз имеет две камеры, заполненные прозрачной жидкостью:

  • переднюю;
  • заднюю.

В итоге можно выделить факторы, которые обеспечивают выполнение всех функций зрительного анализатора:

  • достаточное количество света;
  • фокусировка картинки на сетчатке;
  • аккомодационный рефлекс.

Глазодвигательные мышцы

Они являются частью вспомогательной системы органа зрения и зрительного анализатора. Как отмечалось, есть две косые и четыре прямые мышцы.

  • нижняя;
  • верхняя.
  • нижняя;
  • латеральная;
  • верхняя;
  • медиальная.

Прозрачные среды внутри глаз

Они необходимы, чтобы пропускать лучи света к сетчатке, а также их преломлять в роговице. Дальше лучи попадают в переднюю камеру. Затем преломление осуществляется хрусталиком – линзой, меняющей силу преломления.

Можно выделить два основных нарушения зрения:

  • дальнозоркость;
  • близорукость.

Первое нарушение образуется при снижении выпуклости хрусталика, близорукость – наоборот. В хрусталике нет нервов, сосудов: развитие воспалительных процессов исключено.

Бинокулярное зрение

Чтобы получить одну картинку, сформированную двумя глазами, картинка фокусируется в одной точке. Такие линии зрения расходятся при взгляде на удаленные объекты, сходятся – близкие.

Еще благодаря бинокулярному зрению можно определить нахождение объектов в пространстве по отношению друг к другу, оценивать их удаленность, прочее.

Гигиена зрения

Мы рассмотрели строение зрительного анализатора, а также определенным образом разобрались, как ведется работа зрительного анализатора. А напоследок стоит узнать, как же правильно следить за гигиеной органов зрения, чтобы обеспечить их эффективную и бесперебойную работу.

  • необходимо защищать глаза от механического воздействия;
  • читать книги, журналы и прочую текстовую информацию необходимо с хорошим освещением, держать объект чтения на должном расстоянии – около 35 см;
  • желательно, чтобы свет падал слева;
  • чтение на коротком расстоянии способствует развитию близорукости, поскольку хрусталику длительное время приходится пребывать в выпуклом состоянии;
  • нельзя допускать воздействия излишне яркого освещения, которое способно разрушить световоспринимающие клетки;
  • не стоит читать в транспорте или лежа, поскольку в этом случае постоянно меняется фокусное расстояние, снижается эластичность хрусталика, ослабевает ресничная мышца;
  • нехватка витамина А может спровоцировать снижение остроты зрения;
  • частые прогулки на свежем воздухехорошая профилактика многих заболеваний глаз.

Подведение итогов

Следовательно, можно отметить, что зрительный анализатор представляет собой непростой, но весьма важный инструмент для обеспечения качественной жизни человека. Не зря изучение органов зрения переросло в отдельную дисциплину – офтальмологию.

Кроме определенной функции, глаза играют еще и эстетическую роль, украшая человеческое лицо. Поэтому зрительный анализатор – очень важный элемент организма, очень важно соблюдать гигиену органов зрения, периодически приходить на осмотр к врачу и правильно питаться, вести здоровый образ жизни.

Дата: 20.04.2016

Комментариев: 0

Комментариев: 0

  • Немного о строении зрительного анализатора
  • Функции радужной оболочки и роговицы
  • Что дает преломление изображения на сетчатке
  • Вспомогательный аппарат глазного яблока
  • Глазные мышцы и веки

Зрительный анализатор — это парный орган зрения, представленный глазным яблоком, мышечной системой глаза и вспомогательным аппаратом. С помощью способности видеть человек может различать цвет, форму, величину предмета, его освещенность и расстояние на котором он находится. Так человеческий глаз способен различать направление движения предметов или их неподвижность. 90% информации человек получает благодаря способности видеть. Орган зрения является самым важным из всех органов чувств. Зрительный анализатор включает в себя глазное яблоко с мышцами и вспомогательный аппарат.

Немного о строении зрительного анализатора

Глазное яблоко расположено в глазнице на жировой подушке, которая служит амортизатором. При некоторых заболеваниях, кахексии (исхудание) жировая подушка истончается, глаза опускаются вглубь глазной впадины и создается ощущение, что они «запали». Глазное яблоко имеет три оболочки:

  • белочную;
  • сосудистую;
  • сетчатую.

Характеристики зрительного анализатора довольно сложны, поэтому разбирать их нужно по порядку.

Белочная оболочка (склера) является самой наружной оболочкой глазного яблока. Физиология этой оболочки устроена так, что она состоит из плотной соединительной ткани, не пропускающей лучи света. К склере прикрепляются мышцы глаза, обеспечивающие движения глаза и конъюнктива. Передняя часть склеры имеет прозрачную структуру и называется роговицей. На роговице сконцентрировано огромное количество нервных окончаний, обеспечивающих ее высокую чувствительность, а кровеносные сосуды в этой области отсутствуют. По форме она круглая и несколько выпуклая, что позволяет обеспечить правильное преломление лучей света.

Сосудистая оболочка состоит из большого количества кровеносных сосудов, которые обеспечивают трофику глазного яблока. Строение зрительного анализатора устроено так, что сосудистая оболочка прерывается в том месте, где склера переходит в роговицу и образует вертикально расположенный диск, состоящий из сплетений сосудов и пигмента. Эта часть оболочки носит название радужки. Пигмент, содержащийся в радужке у каждого человека свой, он и обеспечивает цвет глаз. При некоторых заболеваниях пигмент может уменьшаться или совсем отсутствовать (альбинизм), тогда радужная оболочка приобретает красный цвет.

В центральной части радужки расположено отверстие, диаметр которого изменяется в зависимости от интенсивности освещения. Лучи света проникают в глазное яблоко на сетчатую оболочку только через зрачок. Радужная оболочка имеет гладкую мускулатуру — круговые и радиальные волокна. Она отвечает за диаметр зрачка. Круговые волокна отвечают за сужение зрачка, иннервирует их периферическая нервная система и глазодвигательный нерв.

Радиальные мышцы относят к симпатической нервной системе. Управление этими мышцами осуществляется из единого мозгового центра. Потому расширение и сужение зрачков происходит сбалансированно, независимо от того на один глаз подействовать ярким светом или на оба.

Вернуться к оглавлению

Функции радужной оболочки и роговицы

Радужка является диафрагмой глазного аппарата. Она обеспечивает регулирование поступления лучей света на сетчатку. Зрачок сужается, когда на сетчатку после преломлений попадает меньшее количество лучей света.

Происходит это при повышении интенсивности освещения. При снижении освещения зрачок расширяется и на глазное дно попадает большее количество света.

Анатомия зрительного анализатора устроена так, что диаметр зрачков зависит не только от освещения, на этот показатель влияют и некоторые гормоны организма. Так, например, при испуге выделяется большое количество адреналина, который также способен действовать на сократительную способность мышц, отвечающих за диаметр зрачка.

Радужка и роговица не соединены: имеется пространство, которое называется передней камерой глазного яблока. Передняя камера заполнена жидкостью, выполняющей трофическую функцию для роговицы и участвующую в преломлении света при прохождении лучей света.

Третья сетчатая оболочка — это специфический воспринимающий аппарат глазного яблока. Сетчатая оболочка образована разветвленными нервными клетками, которые выходят из глазного нерва.

Сетчатая оболочка расположена сразу за сосудистой и выстилает большую часть глазного яблока. Схема строения сетчатки очень сложная. Воспринимать предметы способна только задняя часть сетчатой оболочки, которая образована специальными клетками: колбочками и палочками.

Схема строения сетчатки очень сложная. Колбочки отвечают за восприятие цвета предметов, палочки — за интенсивность освещения. Палочки и колбочки расположены вперемешку, но в некоторых участках есть скопление только палочек, а в некоторых — только колбочек. Свет, попадая на сетчатку, вызывает реакцию внутри этих специфических клеток.

Вернуться к оглавлению

Что дает преломление изображения на сетчатке

Вследствие такой реакции вырабатывается нервный импульс, который передается по нервным окончаниям в зрительный нерв, а затем в затылочную долю коры головного мозга. Интересно, что проводящие пути зрительного анализатора имеют полный и неполный перекрест между собой. Таким образом информация из левого глаза поступает в затылочную долю коры головного мозга справа и наоборот.

Интересным фактом является и то, что изображение предметов после преломлений на сетчатке передается в перевернутом виде.

В таком виде информация поступает в кору головного мозга, где потом обрабатывается. Воспринимать предметы в том виде, в каком они есть, это приобретенный навык.

Новорожденные дети воспринимают мир в перевернутом виде. По мере роста и развития головного мозга вырабатываются эти функции зрительного анализатора и ребенок начинает воспринимать внешний мир в истинном виде.

Система преломления представлена:

  • передней камерой;
  • задней камерой глаза;
  • хрусталиком;
  • стекловидным телом.

Передняя камера расположена между роговицей и радужкой. Она обеспечивает питание роговичной оболочки. Задняя камера находится между радужкой и хрусталиком. И передняя и задняя камеры заполнены жидкостью, которая способна циркулировать между камерами. Если эта циркуляция нарушается, то возникает заболевание, которое приводит к нарушению зрения и может привести даже к его потере.

Хрусталик — это двояковыпуклая прозрачная линза. Функция хрусталика — преломление лучей света. Если при некоторых заболеваниях изменяется прозрачность этой линзы, то возникает такое заболевание, как катаракта. На сегодняшний день единственным лечением катаракты является замена хрусталика. Операция эта несложная и довольно хорошо переносится пациентами.

Стекловидное тело заполняет все пространство глазного яблока, обеспечивая постоянную форму глаза и его трофику. Стекловидное тело представлено студенистой прозрачной жидкостью. При прохождении через нее лучи света преломляются.



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения