Подпишись и читай
самые интересные
статьи первым!

Опыт фредерика. Дыхательный центр, его локализация, строение и регуляция активности

Главным гуморальным стимулятором дыхательного центра является избыток углекислого газа в крови, что проде­монстрировано в опытах Фредерика и Холдена.

Опыт Фредерика на двух собаках с перекрестным кровообращением. У обеих собак (первой и второй) перерезают сонные артерии и перекрестно их соединяют. Так же поступают с яремными венами. Позвоночные артерии перевязывают. В результате этих операций голова пер­вой собаки получает кровь от второй собаки, а голова второй собаки - от первой. У первой собаки перекрывают трахею, что вызывает гипервентиляцию (частое и глубокое дыхание) у второй со­баки, в голову которой поступает кровь от первой собаки, обедненная кислоро­дом и обогащенная углекислым газом. У первой собаки наблюдается апноэ, в ее голову поступает кровь с более низ­ким напряжением С0 2 и примерно с обычным, нормальным содержанием 0 2 - гипервентиляция вымывает С0 2 и практически не влияет на содержание 0 2 в крови, так как гемоглобин насыщен

0 2 почти полностью и без гипервенти­ляции.

Результаты опыта Фредерика свиде­тельствуют о том, что дыхательный центр возбуждается либо избытком углекисло­го газа, либо недостатком кислорода .

В опыте Холдена в замкну­том пространстве, из которого С0 2 удаляется, дыхание стимулируется слабо. Если С0 2 не удаляется, наблюда­ется одышка - учащение и углубление дыхания. Позже было доказано, что уве­личение содержания С0 2 в альвеолах на 0,2 % ведет к увеличению вентиляции легких на 100 %. Увеличение содержа­ния С0 2 в крови стимулирует дыхание как за счет снижения pH, так и непо­средственным действием самого С0 2 .

Влияние С0 2 и ионов Н + на дыхание опосредовано главным образом их дей­ствием на особые структуры ствола моз­га, обладающие хемочувствительностью (центральные хеморецепторы). Хеморе­цепторы, реагирующие на изменение газового состава крови, обнаружены снаружи в стенках сосудов только в двух областях - в дуге аорты и синокаротидной области.

Роль аортальных и синокаротидных хеморецепторов в регуляции дыхания по­казана в опыте со снижением напряже­ния 0 2 в артериальной крови (гипоксемия) ниже 50-60 мм рт. ст. - при этом увеличивается вентиляция легких уже через 3-5 с. Подобная гипоксемия мо­жет возникнуть при подъеме на высоту, при сердечно-легочной патологии. Со­судистые хеморецепторы возбуждаются и при нормальном напряжении газов крови, их активность сильно возраста­ет при гипоксии и исчезает при дыха­нии чистым кислородом. Стимуляция дыхания при снижении напряжения 0 2 опосредована исключительно пери­ферическими хеморецепторами. Каро­тидные хеморецепторы являются вто­ричными - это тельца, синаптически связанные с афферентными волокнами каротидного нерва. Они возбуждаются при гипоксии, снижении pH и увели­чении Рсо 2 , при этом кальций входит в клетку. Медиатором их является до­фамин.



Аортальные и каротидные тельца воз­буждаются и при повышении напряже­ния С0 2 или при уменьшении pH. Одна­ко влияние С0 2 с этих хеморецепторов выражено меньше, нежели влияние 0 2 .

Гипоксемия (снижение парциального давления кислорода в крови) стимулирует дыхание значительно больше, если она сопровож­дается гиперкапнией , что наблюдается при очень интенсивной физической ра­боте: гипоксемия увеличивает реакцию на С0 2 . Однако при значительной гипоксемии, вследствие снижения окис­лительного метаболизма, уменьшается чувствительность центральных хеморе­цепторов. В этих условиях решающую роль в стимуляции дыхания играют со­судистые хеморецепторы, активность которых повышается, так как для них адекватным раздражителем является снижение напряжения 0 2 в артериаль­ной крови (аварийный механизм стиму­ляции дыхания).

Таким образом, сосудистые хеморе­цепторы реагируют преимущественно на снижение в крови уровня кислорода, цен­тральные хеморецепторы - на измене­ния в крови и спинномозговой жидкости pH и Рсо г

Значение прессорецепторов каротид­ного синуса и дуги аорты. Повышение АД увеличивает афферентную импуль­сацию в синокаротидном и аортальном нервах, что ведет к некоторому угнете­нию дыхательного центра и ослаблению вентиляции легких. Напротив, дыхание несколько усиливается при снижении АД и уменьшении афферентной им­пульсации в ствол мозга от сосудистых прессорецепторов.

По современным представлениям дыхательный центр – это совокупность нейронов, обеспечивающих смену процессов вдоха и выдоха и адаптацию системы к потребностям организма. Выделяют несколько уровней регуляции:

1) спинальный;

2) бульбарный;

3) супрапонтиальный;

4) корковый.

Спинальный уровень представлен мотонейронами передних рогов спинного мозга, аксоны которых иннервируют дыхательные мышцы. Этот компонент не имеет самостоятельного значения, так как подчиняется импульсам из вышележащих отделов.

Нейроны ретикулярной формации продолговатого мозга и моста образуют бульбарный уровень . В продолговатом мозге выделяют следующие виды нервных клеток:

1) ранние инспираторные (возбуждаются за 0,1–0,2 с до начала активного вдоха);

2) полные инспираторные (активируются постепенно и посылают импульсы всю фазу вдоха);

3) поздние инспираторные (начинают передавать возбуждение по мере угасания действия ранних);

4) постинспираторные (возбуждаются после торможения инспираторных);

5) экспираторные (обеспечивают начало активного выдоха);

6) преинпираторные (начинают генерировать нервный импульс перед вдохом).

Аксоны этих нервных клеток могут направляться к мотонейронам спинного мозга (бульбарные волокна) или входить в состав дорсальных и вентральных ядер (протобульбарные волокна).

Нейроны продолговатого мозга, входящие в состав дыхательного центра, обладают двумя особенностями:

1) имеют реципрокные отношения;

2) могут самопроизвольно генерировать нервные импульсы.

Пневмотоксический центр образован нервными клетками моста. Они способны регулировать активность нижележащих нейронов и приводят к смене процессов вдоха и выдоха. При нарушении целостности ЦНС в области ствола мозга понижается частота дыхания и увеличивается продолжительность фазы вдоха.

Супрапонтиальный уровень представлен структурами мозжечка и среднего мозга, которые обеспечивают регуляцию двигательной активности и вегетативной функции.

Корковый компонент состоит из нейронов коры больших полушарий, влияющих на частоту и глубину дыхания. В основном они оказывают положительное влияние, особенно на моторные и орбитальные зоны. Кроме того, участие коры больших полушарий говорит о возможности самопроизвольно изменять частоту и глубину дыхания.

Таким образом, в регуляции дыхательного процесса принимают различные структуры коры больших полушарий, но ведущую роль играет бульбарный отдел.

2. Гуморальная регуляция нейронов дыхательного центра

Впервые гуморальные механизмы регуляции были описаны в опыте Г. Фредерика в 1860 г., а затем изучались отдельными учеными, в том числе И. П. Павловым и И. М. Сеченовым.

Г. Фредерик провел опыт перекрестного кровообращения, в котором соединил сонные артерии и яремные вены двух собак. В результате голова собаки № 1 получала кровь от туловища животного № 2, и наоборот. При пережатии трахеи у собаки № 1 произошло накопление углекислого газа, который поступил в туловище животного № 2 и вызвал у него повышение частоты и глубины дыхания – гиперпноэ. Такая кровь поступила в голову собаки под № 1 и вызвала понижение активности дыхательного центра вплоть до остановки дыхания гипопноэ и апопноэ. Опыт доказывает, что газовый состав крови напрямую влияет на интенсивность дыхания.

Возбуждающее действие на нейроны дыхательного центра оказывают:

1) понижение концентрации кислорода (гипоксемия);

2) повышение содержания углекислого газа (гиперкапния);

3) повышение уровня протонов водорода (ацидоз).

Тормозное влияние возникает в результате:

1) повышения концентрации кислорода (гипероксемии);

2) понижения содержания углекислого газа (гипокапнии);

3) уменьшения уровня протонов водорода (алкалоза).

В настоящее время учеными выделено пять путей влияния газового состава крови на активность дыхательного центра:

1) местное;

2) гуморальное;

3) через периферические хеморецепторы;

4) через центральные хеморецепторы;

5) через хемочувствительные нейроны коры больших полушарий.

Местное действие возникает в результате накопления в крови продуктов обмена веществ, в основном протонов водорода. Это приводит к активации работы нейронов.

Гуморальное влияние появляется при увеличении работы скелетных мышц и внутренних органов. В результате выделяются углекислый газ и протоны водорода, которые стоком крови поступают к нейронам дыхательного центра и повышают их активность.

Периферические хеморецепторы – это нервные окончания с рефлексогенных зон сердечно-сосудистой системы (каротидные синусы, дуга аорты и т. д.). Они реагируют на недостаток кислорода. В ответ начинают посылаться импульсы в ЦНС, приводящие к увеличению активности нервных клеток (рефлекс Бейнбриджа).

В состав ретикулярной формации входят центральные хеморецепторы , которые обладают повышенной чувствительностью к накоплению углекислого газа и протонов водорода. Возбуждение распространяется на все зоны ретикулярной формации, в том числе и на нейроны дыхательного центра.

Нервные клетки коры больших полушарий также реагируют на изменение газового состава крови.

Таким образом, гуморальное звено играет важную роль в регуляции работы нейронов дыхательного центра.

3. Нервная регуляция активности нейронов дыхательного центра

Нервная регуляция осуществляется в основном рефлекторными путями. Выделяют две группы влияний – эпизодические и постоянные.

К постоянным относятся три вида:

1) от периферических хеморецепторов сердечно-сосудистой системы (рефлекс Гейманса);

2) от проприорецепторов дыхательных мышц;

3) от нервных окончаний растяжений легочной ткани.

В процессе дыхания мышцы сокращаются и расслабляются. Импульсы от проприорецепторов поступают в ЦНС одновременно к двигательным центрам и нейронам дыхательного центра. Происходит регуляция работы мышц. При возникновении каких-либо препятствий дыхания инспираторные мышцы начинают еще больше сокращаться. В результате устанавливается зависимость между работой скелетных мышц и потребностями организма в кислороде.

Рефлекторные влияния от рецепторов растяжения легких были впервые обнаружены в 1868 г. Э. Герингом и И. Брейером. Они обнаружили, что нервные окончания, расположенные в гладкомышечных клетках, обеспечивают три вида рефлексов:

1) инспираторно-тормозные;

2) экспираторно-облегчающие;

3) парадоксальный эффект Хеда.

При нормальном дыхании возникает инспираторно-тормозные эффекты. Во время вдоха легкие растягиваются, и импульсы от рецепторов по волокнам блуждающих нервов поступают в дыхательный центр. Здесь происходит торможение инспираторных нейронов, что приводит к прекращению активного вдоха и наступлению пассивного выдоха. Значение этого процесса заключается в обеспечении начала выдоха. При перегрузке блуждающих нервов смена вдоха и выдоха сохраняется.

Экспираторно-облегчающий рефлекс можно обнаружить только в ходе эксперимента. Если растягивать легочную ткань в момент выдоха, то наступление следующего вдоха задерживается.

Парадоксальный эффект Хеда можно осуществить в ходе опыта. При максимальном растяжении легких в момент вдоха наблюдается дополнительный вдох или вздох.

К эпизодическим рефлекторным влияниям относятся:

1) импульсы от ирритарных рецепторов легких;

2) влияния с юкстаальвеолярных рецепторов;

3) влияния со слизистой оболочки дыхательных путей;

4) влияния от рецепторов кожи.

Ирритарные рецепторы расположены в эндотелиальном и субэндотелиальном слое дыхательных путей. Они выполняют одновременно функции механорецепторов и хеморецепторов. Механорецепторы обладают высоким порогом раздражения и возбуждаются при значительным спадании легких. Подобные спадания наступают в норме 2–3 раза в час. При уменьшении объема легочной ткани рецепторы посылают импульсы к нейронам дыхательного центра, что приводит к дополнительному вдоху. Хеморецепторы реагируют на появление частиц пыли в слизи. При активации ирритарных рецепторов возникают чувство першения в горле и кашель.

Юкстаальвеолярные рецепторы находятся в интерстиции. Они реагируют на появление химических веществ – серотонина, гистамина, никотина, а также на изменение жидкости. Это приводит к особому виду одышки при отеке (при пневмонии).

При сильном раздражении слизистой оболочки дыхательных путей происходит остановка дыхания, а при умеренном появляются защитные рефлексы. Например, при раздражении рецепторов носовой полости возникает чиханье, при активации нервных окончаний нижних дыхательных путей – кашель.

На частоту дыхания оказывают влияние импульсы, поступающие от температурных рецепторов. Так, например, при погружении в холодную воду наступает задержка дыхания.

При активации ноцецепторов сначала наблюдается остановка дыхания, а затем происходит постепенное учащение.

Во время раздражения нервных окончаний, заложенных в тканях внутренних органов, происходит уменьшение дыхательных движений.

При повышении давления наблюдается резкое понижение частоты и глубины дыхания, что влечет уменьшение присасывающей способности грудной клетки и восстановление величины кровяного давления, и наоборот.

Таким образом, рефлекторные влияния, оказываемые на дыхательный центр, поддерживают на постоянном уровне частоту и глубину дыхания.

Слышали про такой эксперимент над экспертами по теме вина? Я как то был во Франции, где мы пробовали по 10-15 вариантов коньяка стоимостью от 100 до 10 000 долларов за бутылку - я вообще ничего не мог там различить. Во-первых совсем не специалист и нет какого то богатого опыта пития, во-вторых коньяк все же крепкая штука.

А вот то, что пишут про эксперименты с вином мне кажется уж очень утрировано, упрощенно или эксперты у них такие никакущие. Вот смотрите сами.

Однажды в Бостоне прошла дегустация вин, в которой приняли участие знаменитые ценители этого напитка. Правила дегустации вина были очень простыми. Двадцать пять лучших вин, цена за которые не должна превышать $12, были куплены в обычном магазине в Бостоне. Позже была составлена группа экспертов по оценке красных и белых вин, которые должны были в слепую выявить самое лучшее вино из представленных…

В результате победителем стало самое дешевое вино. Это ещё раз подтверждает, что дегустаторы и винные критики, это — миф. По результатам анализа ответов экспертов было выявлено, что все дегустаторы выбирали то вино, которое просто им больше всего нравилось по вкусу. Вот вам и "эксперты".

Кстати, в 2001 году Фредерик Броше из Университета Бордо, провел два отдельных и очень показательных эксперимента над дегустаторами. В первом тесте, Броше пригласил 57 экспертов и попросил их описать свои впечатления о всего лишь двух винах.

Перед экспертами стояло два бокала, с белым и красным вином. Хитрость заключалась в том, что красного вина не было, на самом деле это было то же белое вино, подкрашенное пищевым красителем. Но это не помешало экспертам описать «красное» вино на языке, который они обычно используют для описания красных вин.

Один из экспертов высоко оценил его "jamminess" (вареньеподобие), а другой даже "почувствовал" "измельченные красные плоды". Никто не заметил, что это было на самом деле белое вино!!!


Второй эксперимент Броше оказался ещё более убийственным для критиков. Он взял обычное Бордо и разлил его в две разные бутылки с разными этикетками. Одна бутылка была "гран-крю", другая — обычное столовое вино.

Несмотря на то, что они на самом деле пили одно и то же вино, эксперты оценили их по-разному. "Гран крю" был "приятным, древесным, комплексным, сбалансированным и обвалакивающим", а столовое было, по мнению экспертов "слабым, безвкусным, ненасыщенным, простым".

При этом большая часть даже не рекомендовала "столовое" вино к употреблению.
Эксперты — показатели моды и их вкус ничем не отличается от чувства вкуса обычного человека. Просто люди хотят прислушиваться к чьему-либо мнению, для этого и существует "эксперт".

Возникает вопрос: А существуют ли "эксперты"? Другими словами, мы — разные люди, и наши вкусы разнятся так же, как и марки дешевого вина, кому-то они нравятся, а кому-то нет.

Или все же если уж не марку и год урожая, то белое и красное вино то отличить точно можно даже слабенькому эксперту? Как вы относитесь к экспертам по вину?

Для нормального протекания тканевого обмена особенно важны содержание О 2 и СО 2 в артериальной крови.

Регуляция внешнего дыхания

Вентиляция легких - это процесс обновления газового состава альвеолярного воздуха, который обеспечивает поступление кислорода и выведение углекислого газа. Этот процесс осуществляется ритмичной работой дыхательных мышц, изменяющих объем грудной клетки. Интенсивность вентиляции определяется глубиной вдоха и частотой дыхания . Таким образом, минутный объем дыхания - это показатель легочной вентиляции, который должен обеспечивать тот газовый гомеостаз, который необходим в конкретной ситуации (покой, физическая работа).Регуляция внешнего дыхания представляет собой процесс изменения минутного объема дыхания в различных условиях для обеспечения оптимального газового состава внутренней среды организма.

Во второй половине ХIXвека появилась гипотеза о том, что основными факторами регуляции дыхания являются парциальное давление кислорода и углекислого газа в альвеолярном воздухе и, следовательно в артериальной крови. Экспериментальное доказательство того, что обогащение артериальной крови углекислотой и обеднение кислородом усиливает вентиляцию легких в результате наступающего при этом возбуждения дыхательного центра, было получено в классическом опыте Фредерика с перекрестным кровообращением в 1890г (рисунок 13). У двух собак, находившихся под наркозом, перерезали и соединяли перекрестно сонные артерии и отдельно яремные вены. После такого соединения и перевязки позвоночных артерий голова первой собаки снабжалась кровью второй и наоборот. Если у первой собаки перекрывали трахею и вызывали таким путем асфиксию, то у второй собаки развивалосьгиперпноэ - увеличение легочной вентиляции. У первой же собаки, несмотря на увеличение в крови напряжения углекислоты и снижение напряжения кислорода через некоторое время наступалоапноэ - прекращение дыхательных движений. Это объясняется тем, что в сонную артерию первой собаки поступает кровь второй собаки, у которой в результате гипервентиляции снижается содержание углекислоты в артериальной крови. Уже тогда было установлено, что регуляция дыхания происходит путем обратной связи: отклонения в газовом составе артериальной крови приводят путем воздействия на дыхательный центр такие изменения дыхания, которые уменьшают эти отклонения.

Рисунок 13. Схема опыта Фредерика с перекрестным кровообращением

Пережатие трахеи у собаки А вызывает одышку у собаки Б. Одышка у собаки Б вызывает замедление и остановку дыхания у собаки А

В начале ХIXвека было показано, что в продолговатом мозге на днеIVжелудочка расположены структуры, разрушение которых уколом иглы ведет к прекращению дыхания и гибели организма. Этот небольшой участок мозга в нижнем углу ромбовидной ямки был назван дыхательным центром.

Многочисленными исследованиями удалось установить, что изменения газового состава внутренней среды оказывают влияние на дыхательный центр не непосредственно, а путем воздействия на специальные хемочувствительные рецепторы, расположенные в продолговатом мозге - центральные (медуллярные) хеморецепторы и в сосудистых рефлексогенных зонах - периферические (артериальные) хеморецепторы.

В ходе эволюционного развития основная функция в стимуляции дыхательного центра перешла от периферических хеморецепторов к центральным. Речь идет прежде всего о бульбарных хемочувствительных структурах, реагирующих на изменение концентрации ионов водорода и напряжения СО 2 во внеклеточной жидкости мозга. За периферическими, артериальными хеморецепторами, которые возбуждаются и при повышении напряжения СО 2 , и при снижении напряжения кислорода в омывающей их крови, осталась лишь вспомогательная роль в стимуляции дыхания.

Поэтому рассмотрим сначала центральные хеморецепторы, которые оказывают более выраженное влияние на деятельность дыхательного центра.

Обеспечивает не только ритмическое чередование вдоха и выдоха, но и способен ивменять глубину и частоту дыхательных движений, приспосабливая тем самым легочную вентиляцию к текущим потребностям организма. Факторы внешней среды, такие, например, как состав и давление атмосферного воздуха, окружающая температура и изменения состояния организма, например, при мышечной работе, эмоциональном возбуждении, и другие, влияя на интенсивность обмена веществ, а следовательно, потребление кислорода и выделение углекислого газа, действуют на функциональное состояние дыхательного центра. В результате меняется объем легочной вентиляции.

Как и все другие процессы регуляции физиологических функций, регуляция дыхания осуществляется в организме в соответствии с принципом обратной связи. Это значит, что деятельность дыхательного центра, регулирующего снабжение организма кислородом и удаление образующегося в нем углекислого газа, определяется состоянием регулируемого им процесса. Накопление в крови углекислоты, а также недостаток кислорода являются факторами, вызывающими возбуждение дыхательно центра.

Если у одной из этих собак зажать трахею и таким образом производить удушение организма, то через некоторое время у нее происходит остановка дыхания (апноэ), у второй же собаки возникает резкая одышка (диспноэ). Это объясняется тем, что зажатие трахеи у первой собаки вызывает накопление СО2 в крови ее туловища (гиперкапнию) и уменьшение содержания кислорода (гипоксемию). Кровь из туловища первой собаки поступает в голову второй собаки и стимулирует ее дыхательный центр. В результате возникает усиленное дыхание - гипервентиляция - у второй собаки, что приводит к снижению напряжения СО2 и повышению напряжения О2 в крови сосудов туловища второй собаки. Богатая кислородом и бедная углекислым газом кровь из туловища этой собаки поступает в голову первой и вызывает у нее апноэ.

. Опыт Фредерика показывает, что деятельность дыхательного центра изменяется при изменении напряжения СО2 и О2 в крови. Особенно важное значение для регуляции деятельности дыхательного центра имеет изменение напряжения углекислоты в крови.

. Возбуждение инспираторных нейронов дыхательного центра возникает не только при новышении напряжения углекислого газа в крови, но и при понижении напряжения кислорода.

. Дыхательный центр получает афферентные импульсы не только от хеморецепторов, но и от прессорецепторов сосудистых рефлексогенных зон, а также от механорецепторов легких, дыхательных путей и дыхательных мышц. Все эти импульсы вызывают рефлекторные изменения дыхания. Особенно важное значение имеют импульсы, поступающие к дыхательному центру по блуждающим нервам от рецепторов легких.

. Между инспираторными и экспираторными нейронами существуют сложные реципрокные (сопряженные) соотношения. Это означает, что возбуждение инспираторных нейронов тормозит экспираторные, а возбуждение экспираторных нейронов тормозит инспираторные. Такие явления частично обусловлены наличием прямых связей, существующих между нейронами дыхательного центра, но в основном они зависят от рефлекторных влияний и от функционирования центра пневмотаксиса.



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения