Подпишись и читай
самые интересные
статьи первым!

Нервно гуморальная регуляция работы сердца. Нервная и гуморальная регуляция в теле человека Функцииклеточных мембран и механизмы их реализа

СТРОЕНИЕ, ФУНКЦИИ

Человеку приходится постоянно регулировать физиологические процессы в соответствии с собственными потребностями и изменениями окружающей среды. Для осуществления постоянной регуляции физиологические процессов используются два механизма: гуморальный и нервный.

Модель нервно-гуморального управления строится по принципу двухслойной нейронной сети. Роль формальных нейронов первого слоя в нашей модели играют рецепторы. Второй слой состоит из одного формального нейрона - сердечного центра. Его входными сигналами являются выходные сигналы рецепторов. По единственному аксону формального нейрона второго слоя передается выходная величина нервно-гуморального фактора.

Нервная, а точнее нервно-гуморальная система управления организмом человека является наиболее мобильной и откликается на воздействие внешней среды в течение долей секунды. Нервная система представляет собой сеть из живых волокон, взаимосвязанных друг с другом и с клетками других типов, например, сенсорными рецепторами (рецепторами органов обоняния, осязания, зрения и др.), мышечными, секреторными клетками и т. д. Между всеми этими клетками нет непосредственной связи, поскольку они всегда разделены маленькими пространственными промежутками, которые называются синаптическими щелями. Клетки, как нервные, так и другие, сообщаются друг с другом путем передачи сигнала от одной клетки к другой. Если по самой клетке сигнал передается за счет разницы концентраций ионов натрия и калия, то передача сигнала между клетками происходит путем выброса в синаптическую щель органического вещества, которое вступает в связь с рецепторами принимающей клетки, находящейся на другой стороне синаптической щели. Для того чтобы выбросить вещество в синаптическую щель, нервная клетка образует везикулу (оболочку из гликопротеинов), содержащую 2000-4000 молекул органического вещества (например, ацетилхолин, адреналин, норадреналин, дофамин, серотонин, гамма-аминомасляная кислота, глицин и глутамат и др.). В качестве рецепторов на то или иное органическое вещество в принимающей сигнал клетке также используется гликопротеиновый комплекс.

Гуморальная регуляция осуществляется с помощью химических веществ, которые поступают из различных органов и тканей тела в кровь и разносятся ею по всему организму. Гуморальная регуляция является древней формой взаимодействия клеток и органов.

Нервная регуляция физиологических процессов заключается во взаимодействии органов тела с помощью нервной системы. Нервная и гуморальная регуляции функций организма взаимно связаны, образуют единый механизм нервно-гуморальной регуляции функций организма.

Нервная система играет важнейшую роль в регуляции функций организма. Она обеспечивает согласованную работу клеток, тканей, органов и их систем. Организм функционирует как единое целое. Благодаря нервной системе осуществляется связь организма с внешней средой. Деятельность нервной системы лежит в основе чувств, обучения, памяти, речи и мышления - психических процессов, с помощью которых человек не только познает окружающую среду, но и может активно ее изменять.

Нервная система подразделяется на две части: центральную и периферическую. Восстав центральной нервной системы входят головной и спинной мозг, образованные нервной тканью. Структурной единицей нервной ткани является нервная клетка - нейрон.-Нейрон состоит из тела и отростков. Тело нейрона может быть различной формы. Нейрон имеет ядро, короткие, толстые, сильно ветвящиеся вблизи тела отростки (дендриты) и длинный отросток аксон (до 1,5 м). Аксоны образуют нервные волокна.

Тела нейронов образуют серое вещество головного и спинного мозга, а скопления их отростков - белое вещество.

Тела нервных клеток за пределами центральной нервной системы образуют нервные узлы. Нервные узлы и нервы (скопления длиных отростков нервных клеток, покрытых оболочкой) образуют периферическую нервную систему.

Спинной мозг расположен в костном позвоночном канале.

Это длинный белый шнур диаметром около 1 см. В центре спинного мозга проходит узкий спинномозговой канал, заполненный спинномозговой жидкостью. На передней и задней поверхности спинного мозга имеются две глубокие продольные борозды. Они делят его на правую и левую половины. Центральная часть спинного мозга образована серым веществом, которое состоит из вставочных и двигательных нейронов. Вокруг серого вещества расположено белое вещество, образованное длинными отростками нейронов. Они направляются вверх или вниз вдоль спинного мозга, образуя восходящие и нисходящие проводящие пути. От спинного мозга отходит 31 пара смешанных спинно-мозговых нервов, каждый из которых начинается двумя корешками: передним и задним. Задние корешки - это аксоны чувствительных нейронов. Скопления тел этих нейронов образуют спинно-мозговые узлы. Передние корешки - это аксоны двигательных нейронов. Спинной мозг выполняет 2 основные функции: рефлекторную и проводниковую.

Рефлекторная функция спинного мозга обеспечивает движение. Через спинной мозг проходят рефлекторные дуги, с которыми связано сокращение скелетных мышц тела. Белое вещество спинного мозга обеспечивает связь и согласованную работу всех отделов центральной нервной системы, осуществляя проводниковую функцию. Головной мозг регулирует работу спинного мозга.

Головной мозг расположен в полости черепа. Он включает отделы: продолговатый мозг, мост, мозжечок, средний мозг, промежуточный мозг и большие полушария. Белое вещество образует проводящие пути головного мозга. Они связывают головной мозг со спинным, части головного мозга между собой.

Благодаря проводящим путям вся центральная нервная система функционирует как единое целое. Серое вещество в виде ядер располагается внутри белого вещества, образует кору, покрывая полушария мозга и мозжечка.

Продолговатый мозг и мост - продолжение спинного мозга, выполняют рефлекторную и проводниковую функции. Ядра продолговатого мозга и моста регулируют пищеварение, дыхание, сердечную деятельность. Эти отделы регулируют жевание, глотание, сосание, защитные рефлексы: рвоту, чихание, кашель.

Над продолговатым мозгом расположен мозжечок. Поверхность его образована серым веществом - корой, под которой в белом веществе находятся ядра. Мозжечок связан со многими отделами центральной нервной системы. Мозжечок регулирует двигательные акты. Когда нарушается нормальная деятельность мозжечка, люди теряют способность к точным согласованным движениям, сохранению равновесия тела.

В среднем мозге расположены ядра, которые посылают к скелетным мышцам нервные импульсы, поддерживающие их напряжение - тонус. В среднем мозге проходят рефлекторные дуги ориентировочных рефлексов на зрительные и звуковые раздражения. Продолговатый мозг, мост и средний мозг образуют ствол мозга. От него отходят 12 пар черепно-мозговых нервов. Нервы связывают мозг с органами чувств, мышцами и железами, расположенными на голове. Одна пара нервов - блуждающий нерв - связывает мозг с внутренними органами: сердцем, легкими, желудком, кишечником и др. Через промежуточный мозг поступают импульсы к коре больших полушарий от всех рецептаров (зрительных, слуховых, кожных, вкусовых).

Ходьба, бег, плавание связаны с промежуточным мозгом. Его ядра согласуют работу различных внутренних органов. Промежуточный мозг регулирует обмен веществ, потребление пищи и воды, поддержание постоянной температуры тела.

Часть периферической нервной системы, которая регулирует работу скелетных мышц, называют соматической (греч, "сома" - тело) нервной системой. Часть нервной системы, регулирующую деятельность внутренних органов (сердца, желудка, различных желез) называют автономной или вегетативной нервной системой. Вегетативная нервная система регулирует работу органов, точно приспосабливая их деятельность к условиям внешней среды и собственным потребностям организма.

Вегетативная рефлекторная дуга состоит из трех звеньев: чувствительного, вставочного и исполнительного. Вегетативная нервная система подразделяется на симпатический и парасимпатический отделы. Симпатическая вегетативная нервная система связана со спинным мозгом, где находятся тела первых нейронов, отростки которых заканчиваются в нервных узлах двух симпатических цепочек, расположенных по обе стороны спереди позвоночника. В симпатических нервных узлах находятся тела вторых нейронов, отростки которых непосредственно иннервируют рабочие органы. Симпатическая нервная система усиливает обмен веществ, повышает возбудимость большинства тканей, мобилизует силы организма на активную деятельность.

Парасимпатическая часть вегетативной нервной системы образована несколькими нервами, отходящими от продолговатого мозга и от нижнего отдела спинного мозга. Парасимпатические узлы, где находятся тела вторых нейронов, расположены в органах, на деятельность которых они влияют. Большинство органов иннервируется как симпатической, так и парасимпатической нервной системой. Парасимпатическая нервная система способствует восстановлению израсходованных запасов энергии, регулирует жизнедеятельность организма во время сна.

Кора больших полушарий образует складки, борозды, извилины. Складчатое строение увеличивает поверхность коры и ее объем, а значит число образующих ее нейронов. Кора отвечает за восприятие всей поступающей в мозг информации (зрительной, слуховой, осязательной, вкусовой), за управление всеми сложными мышечными движениями. Именно с функциями коры связана.мыслительная и речевая деятельность и память.

Кора больших полушарий состоит из четырех долей: лобной, теменной, височной и затылочной. В затылочной доле находятся зрительные области, ответственные за восприятие зрительных сигналов. Слуховые области, ответственные за восприятие звуков, находятся в височных долях. Теменная доля - чувствительный центр, принимающий информацию, поступающую от кожи, костей, суставов, мышц. Лобная доля мозга ответственна за составление программ поведения и управление трудовой деятельностью. С развитием лобных областей коры связан высокий уровень психических способностей человека по сравнению с животными. В составе человеческого мозга есть структуры, которых нет у животных - речевой центр. У человека существует специализация полушарий - многие высшие функции мозга выполняются одним из них. У правшей в левом полушарии находятся слуховой и двигательный центры речи. Они обеспечивают восприятие устной и формирование устной и письменной речи.

Левое полушарие ответственно за осуществление, математических операций и процесса мышления. Правое полушарие отвечает за узнавание людей по голосу и за восприятие музыки, узнавание человеческих лиц и ответственно за музыкальное и художественное творчество - участвует в процессах образного мышления.

Центральная нервная система постоянно контролирует работу сердца посредством нервных импульсов. Внутри полостей самого сердца и в. стенках крупных сосудов расположены нервные окончания - рецепторы, воспринимающие колебания давления в сердце и сосудах. Импульсы от рецепторов вызывают рефлексы, влияющие на работу сердца. Существует два вида нервных влияний на сердце: одни - тормозящие (снижающие частоту сокращений сердца), другие - ускоряющие.

Импульсы передаются к сердцу по нервным волокнам от нервных центров, расположенных в продолговатом и спинном мозге.

Влияния, ослабляющие работу сердца, передаются по парасимпатическим нервам, а усиливающие его работу - по симпатическим. Деятельность сердца находится также и под влиянием гуморальной регуляции. Адреналин - гормон надпочечников, даже в очень малых дозах усиливает работу сердца. Так, боль вызывает выделение в кровь адреналина в количестве нескольких микрограммов, который заметно изменяет деятельность сердца. В практике адреналин иногда вводят в остановившееся сердце, чтобы заставить его сокращаться. Увеличение содержания солей калия в крови угнетает, а кальция - усиливает работу сердца. Веществом, тормозящим работу сердца, является ацетилхолин. Сердце чувствительно даже к дозе 0,0000001 мг, что отчетливо замедляет его ритм. Нервная и гуморальная регуляции совместно обеспечивают очень точное приспособление деятельности сердца к условиям окружающей среды.

Согласованность, ритмичность сокращений и расслаблений дыхательных мышц обусловлены поступающими к ним по нервам импульсами от дыхательного центра продолговатого мозга. И.М. Сеченов в 1882 г. установил, что примерно через каждые 4 сек, в дыхательном центре автоматически возникают возбуждения, обеспечивающие чередование вдоха и выдоха.

Дыхательный центр изменяет глубину и частоту дыхательных движений, обеспечивая оптимальное содержание газов в крови.

Гуморальная регуляция дыхания состоит в том, что повышение концентрации углекислого газа в крови возбуждает дыхательный центр - частота и глубина дыхания увеличиваются, а уменьшение СО2 понижает возбудимость дыхательного центра - частота и глубина дыхания уменьшаются.

Многие физиологические функции организма регулируются с помощью гормонов. Гормоны - высокоактивные вещества, вырабатываемые железами внутренней секреции. Железы внутренней секреции не имеют выводных протоков. Каждая секреторная клетка железы своей поверхностью соприкасается со стенкой кровеносного сосуда. Это позволяет гормонам проникать прямо в кровь. Гормоны вырабатываются в небольших количествах, но долго сохраняются в активном состоянии и с током крови разносятся по всему организму.

Гормон поджелудочной железы, инсулин, играет важную роль в регуляции обмена веществ. Повышение содержания в крови глюкозы служит сигналом для выделения новых порций инсулина. Под его воздействием усиливается использование глюкозы всеми тканями тела. Часть глюкозы превращается в резервное вещество гликоген, который откладывается в печени и мышцах. Инсулин в организме разрушается достаточно быстро, поэтому поступление его в кровь должно быть регулярным.

Гормоны щитовидной железы, основной из них тироксин, регулирует обмен веществ. От их количества в крови зависит уровень потребления кислорода всеми органами и тканями организма. Усиление производства гормонов щитовидной железы приводит к повышению интенсивности обмена веществ. Это проявляется в повышении температуры тела, более полном усвоении пищевых продуктов, в усилении распада белков, жиров, углеводов, в быстром и интенсивном росте тела. Снижение активности щитовидной железы приводит к микседеме: окислительные процессы в тканях снижаются, температура падает, развивается тучность, уменьшается возбудимость нервной системы. При повышении активности щитовидной железы увеличивается уровень обменных процессов: повышаются частота сердечных сокращений, кровяное давление, возбудимость нервной системы. Человек становится раздражительным и быстро устает. Это признаки базедовой болезни.

Гормоны надпочечников - парных желез, расположенных на верхней поверхности почек. Они состоят из двух слоев: наружного -коркового и внутреннего - мозгового. В надпочечниках вырабатывается целый ряд гормонов. Гормоны коркового слоя регулируют обмен натрия, калия, белков, углеводов. Мозговой слой производит гормон норадреналин и адреналин. Эти гормоны регулируют обмен углеводов и жиров, деятельность сердечно-сосудистой системы, скелетной мускулатуры и мускулатуры внутренних органов. Выработка адреналина важна для экстренной подготовки ответных реакций организма, попавшего в критическую ситуацию при внезапно возросшей физической или психической нагрузке. Адреналин обеспечивает повышение содержания сахара в крови, усиление сердечной деятельности и работоспособности мышц.

Гормоны гипоталамуса и гипофиза. Гипоталамус - особый отдел промежуточного мозга, а гипофиз - мозговой придаток, расположенный на нижней поверхности головного мозга. Гипоталамус и гипофиз образуют единую гипоталамо-гипофизарную систему, а их гормоны называются нейрогормонами. Она обеспечивает постоянство состава крови и необходимый уровень обмена веществ. Гипоталамус регулирует функции гипофиза, который управляет деятельностью остальных желез внутренней секреции: щитовидной, поджелудочной, половых, надпочечников. В работе этой системы заложен принцип обратной связи, пример тесного объединения нервного и гуморального способов регуляции функций нашего организма.

Половые гормоны вырабатываются половыми железами, которые выполняют также и функцию желез внешней секреции.

Мужские половые гормоны регулируют рост и развитие организма, возникновение вторичных половых признаков - рост усов, развитие характерной волосистости других частей тела, огрубление голоса, изменение телосложения.

Женские половые гормоны регулируют развитие у женщин вторичных половых признаков - высокого голоса, округлых форм тела, развитие грудных желез, управляют половыми циклами, протеканием беременности и родов. Оба вида гормонов вырабатываются как у мужчин, так и у женщин.

Нервная регуляция осуществляется с помощью электрических импульсов, идущих по нервным клеткам. По сравнению с гуморальной она

  • происходит быстрее
  • более точная
  • требует больших затрат энергии
  • более эволюционно молодая.

Гуморальная регуляция процессов жизнедеятельности (от латинского слова гумор - «жидкость») осуществляется за счет веществ, выделяемых во внутреннюю среду организма (лимфу, кровь, тканевую жидкость).


Гуморальная регуляция может осуществляться с помощью:

  • гормонов - биологически активных (действующих в очень маленькой концентрации) веществ, выделяемых в кровь железами внутренней секреции;
  • других веществ . Например, углекислый газ
    • вызывает местное расширение капилляров, к этому месту притекает больше крови;
    • возбуждает дыхательный центр продолговатого мозга, дыхание усиливается.

Все железы организма делятся на 3 группы

1) Железы внутренней секреции (эндокринные ) не имеют выводных протоков и выделяют свои секреты непосредственно в кровь. Секреты эндокринных желез называются гормонами , они обладают биологической активностью (действуют в микроскопической концентрации). Например: .


2) Железы внешней секреции имеют выводные протоки и выделяют свои секреты НЕ в кровь, а в какую-либо полость или на поверхность организма. Например, печень , слезные , слюнные , потовые .


3) Железы смешанной секреции осуществляют и внутреннюю, и внешнюю секрецию. Например

  • железа выделяет в кровь инсулин и глюкагон, а не в кровь (в 12-перстную кишку) - поджелудочный сок;
  • половые железы выделяют в кровь половые гормоны, а не в кровь - половые клетки.

Установите соответствие между органом (отделом органа), участвующим в регуляции жизнедеятельности организма человека, и системой, к которой он относится: 1) нервная, 2) эндокринная.
А) мост
Б) гипофиз
В) поджелудочная железа
Г) спинной мозг
Д) мозжечок

Ответ


Установите, в какой последовательности осуществляется гуморальная регуляция дыхания при мышечной работе в организме человека
1) накопление углекислого газа в тканях и крови
2) возбуждение дыхательного центра в продолговатом мозге
3) передача импульса к межреберным мышцам и диафрагме
4) усиление окислительных процессов при активной мышечной работе
5) осуществление вдоха и поступление воздуха в легкие

Ответ


Установите соответствие между процессом, происходящим при дыхании человека, и способом его регуляции: 1) гуморальная, 2) нервная
А) возбуждение рецепторов носоглотки частицами пыли
Б) замедление дыхания при погружении в холодную воду
В) изменение ритма дыхания при избытке углекислого газа в помещении
Г) нарушение дыхания при кашле
Д) изменение ритма дыхания при уменьшении содержания углекислого газа в крови

Ответ


1. Установите соответствие между характеристикой железы и видом, к которому ее относят: 1) внутренней секреции, 2) внешней секреции. Запишите цифры 1 и 2 в правильном порядке.
А) имеют выводные протоки
Б) вырабатывают гормоны
В) обеспечивают регуляцию всех жизненно важных функций организма
Г) выделяют ферменты в полость желудка
Д) выводные протоки выходят на поверхность тела
Е) вырабатываемые вещества выделяются в кровь

Ответ


2. Установите соответствие между характеристикой желез и их типом: 1) внешней секреции, 2) внутренней секреции. Запишите цифры 1 и 2 в правильном порядке.
А) образуют пищеварительные ферменты
Б) выделяют секрет в полость тела
В) выделяют химически активные вещества – гормоны
Г) участвуют в регуляции процессов жизнедеятельности организма
Д) имеют выводные протоки

Ответ


Установите соответствие между железами и их типами: 1) внешней секреции, 2) внутренней секреции. Запишите цифры 1 и 2 в правильном порядке.
А) эпифиз
Б) гипофиз
В) надпочечник
Г) слюнная
Д) печень
Е) клетки поджелудочной железы, вырабатывающие трипсин

Ответ


Установите соответствие между примером регуляции работы сердца и типом регуляции: 1) гуморальная, 2) нервная
А) учащение сердцебиений под влиянием адреналина
Б) изменение работы сердца под влиянием ионов калия
В) изменение сердечного ритма под влиянием вегетативной системы
Г) ослабление деятельности сердца под влиянием парасимпатической системы

Ответ


Установите соответствие между железой в организме человека и её типом: 1) внутренней секреции, 2) внешней секреции
А) молочная
Б) щитовидная
В) печень
Г) потовая
Д) гипофиз
Е) надпочечники

Ответ


1. Установите соответствие между признаком регуляции функций в организме человека и его видом: 1) нервная, 2) гуморальная. Запишите цифры 1 и 2 в правильном порядке.
А) доставляется к органам кровью
Б) большая скорость ответной реакции
В) является более древней
Г) осуществляется с помощью гормонов
Д) связана с деятельностью эндокринной системы

Ответ


2. Установите соответствие между характеристиками и видами регуляции функций организма: 1) нервная, 2) гуморальная. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) включается медленно и действует долго
Б) сигнал распространяется по структурам рефлекторной дуги
В) осуществляется действием гормона
Г) сигнал распространяется с током крови
Д) включается быстро и действует коротко
Е) эволюционно более древняя регуляция

Ответ


Выберите один, наиболее правильный вариант. Какие из перечисленных желез выделяют свои продукты через специальные протоки в полости органов тела и непосредственно в кровь
1) сальные
2) потовые
3) надпочечники
4) половые

Ответ


Установите соответствие между железой организма человека и типом, к которому её относят: 1) внутренней секреции, 2) смешанной секреции, 3) внешней секреции
А) поджелудочная
Б) щитовидная
В) слёзная
Г) сальная
Д) половая
Е) надпочечник

Ответ


Выберите три варианта. В каких случаях осуществляется гуморальная регуляция?
1) избыток углекислого газа в крови
2) реакция организма на зеленый сигнал светофора
3) избыток глюкозы в крови
4) реакция организма на изменение положения тела в пространстве
5) выделение адреналина при стрессе

Ответ


Установите соответствие между примерами и видами регуляции дыхания у человека: 1) рефлекторная, 2) гуморальная. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) остановка дыхания на вдохе при входе в холодную воду
Б) увеличение глубины дыхания из-за увеличения концентрации углекислого газа в крови
В) кашель при попадании пищи в гортань
Г) небольшая задержка дыхания из-за снижения концентрации углекислого газа в крови
Д) изменение интенсивности дыхания в зависимости от эмоционального состояния
Е) спазм сосудов мозга из-за резкого увеличения концентрации кислорода в крови

Ответ


Выберите три железы внутренней секреции.
1) гипофиз
2) половые
3) надпочечники
4) щитовидные
5) желудочные
6) молочные

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Клетки каких желез выделяют секрет непосредственно в кровь?
1) надпочечники
2) слезные
3) печень
4) щитовидная
5) гипофиз
6) потовые

Ответ


Выберите три варианта. Гуморальные воздействия на физиологические процессы в организме человека
1) осуществляются с помощью химически активных веществ
2) связаны с деятельностью желёз внешней секреции
3) распространяются медленнее, чем нервные
4) происходят с помощью нервных импульсов
5) контролируются продолговатым мозгом
6) осуществляются через кровеносную систему

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Что характерно для гуморальной регуляции организма человека?
1) ответная реакция четко локализована
2) сигналом служит гормон
3) включается быстро и действует мгновенно
4) передача сигнала только химическая через жидкие среды организма
5) передача сигнала осуществляется через синапс
6) ответная реакция действует продолжительное время

Ответ

© Д.В.Поздняков, 2009-2019

В организме человека постоянно происходят разнообразные процессы жизнеобеспечения. Так, в период бодрствования одновременно функционируют все системы органов: человек двигается, дышит, по его сосудам течет кровь, в желудке и кишечнике идут процессы пищеварения, осуществляется терморегуляция и др. Человек воспринимает все изменения, происходящие в окружающей среде, реагирует на них. Все эти процессы регулируются и контролируются нервной системой и железами эндокринного аппарата.

Гуморальная регуляция (от лат. «гумор» - жидкость)- форма регуляции деятельности организма, присущая всему живому, осуществляется с помощью биологически активных веществ - гормонов (от греч. «гормао» - возбуждаю), которые вырабатываются специальными железами. Их называют железами внутренней сек> реции или эндокринными (от греч. «эндон» - внутри, «кринео» - выделять). Выделяемые ими гормоны поступают непосредственно в тканевую жидкость и в кровь. Кровь разносит эти вещества по организму. Попав в органы и ткани, гормоны оказывают на них определенное воздействие, например влияют на рост тканей, ритм сокращения сердечной мышцы, вызывают сужение просвета сосудов и т. д.

Гормоны влияют на строго определенные клетки, ткани или ор-ганы. Они очень активны, действуют даже в ничтожно малых количествах. Однако гормоны быстро разрушаются, поэтому они должны по мере надобности поступать в кровь или тканевую жидкость по мере надобности.

Обычно железы внутренней секреции невелики: от долей грамма до нескольких граммов.

Важнейшей железой внутренней секреции является гипофиз, расположенный под основанием мозга в особой выемке черепа - турецком седле и связанный с мозгом тонкой ножкой. Гипофиз подразделяют на три доли: переднюю, среднюю и заднюю. В передней и средней долях вырабатываются гормоны, которые, попадая в кровь, достигают других желез внутренней секреции и управляют их работой. В заднюю долю гипофиза поступают по ножке два гормона, вырабатываемых в нейронах промежуточного мозга. Один из этих гормонов регулирует обьем образующейся мочи, а второй усиливает сокращение гладких мышц и играет очень важную роль в процессе родов.

На шее впереди гортани расположена щитовидная железа. Она вырабатывает ряд гормонов, которые участвуют в регуляции процессов роста, развития тканей. Они повышают интенсивность обмена веществ, уровень потребления кислорода органами и тканями.

Околощитовидные железы расположены на задней поверхности щитовидной железы. Этих желез четыре, они очень маленькие, общая масса их составляет всего 0,1-0,13 г. Гормон этих желез регулирует содержание солей кальция и фосфора в крови, при недостатке этого гормона нарушается рост костей, зубов, повышается возбудимость нервной системы.

Парные надпочечники расположены, как видно из их названия, над почками. Они выделяют несколько гормонов, которые регулируют обмен углеводов, жиров, влияют на содержание в организме натрия, калия, регулируют деятельность сердечно-сосудистой системы.

Особенно важен выброс гормонов надпочечников в тех случаях, когда организм вынужден работать в условиях умственного и физического напряжения, т. е. в условиях стресса: эти гормоны усиливают работу мышц, повышают содержание глюкозы в крови (для обеспечения возросших энергетических затрат мозга), усиливают кровоток в мозге и других жизненно важных органах, повышают уровень системного кровяного давления, усиливают сердечную деятельность.

Некоторые железы нашего организма выполняют двойную функцию, т. е. действуют одновременно как железы внутренней и внешней - смешанной - секреции. Это, например, половые железы и поджелудочная железа. Поджелудочная железа выделяет пищеварительный сок, поступающий в двенадцатиперстную кишку; одновременно отдельные ее клетки функционируют как железы внутренней секреции, вырабатывая гормон инсулин, регулирующий обмен yглеводов в организме. В процессе пищеварения углеводы расщепляются до глюкозы, которая всасывается из кишечника в кровеносные сосуды. Снижение выработки инсулина приводит к тому, что большая часть глюкозы не может проникнуть из кровеносных сосудов дальше в ткани органов. В результате клетки различных тканей остаются без важнейшего источника энергии - глюкозы, которая в итоге выводится из организма с мочой. Это заболевание называется диабет. Что же происходит, когда поджелудочная железа вырабатывает слишком много инсулина? Глюкоза очень быстро расходуется различными тканями, прежде всего мышцами, и содержание сахара о крови падает до опасно низкого уровня. В результате мозгу не хватает «горючего», человек впадает в так называемый инсулиновый шок и теряет сознание. В этом случае надо быстро вводить в кровь глюкозу.

Половые железы образуют половые клетки и вырабатывают гормоны, регулирующие рост и созревание организма, формирование вторичных половых признаков. У мужчин это рост усов и бороды, огрубление голоса, изменение телосложения, у женщин - высокий голос, округлость форм тела. Половые гормоны обусловливают развитие половых органов, созревание половых клеток, у женщин управляют фазами полового цикла, течением беременности.

Строение щитовидной железы

Щитовидная железа - один из важнейших органов внутренней секреции. Описание щитовидной железы дал еще в 1543 г. А. Везалий, а свое название она получила более чем век спустя - в 1656 г.

Современные научные представления о щитовидной железе стали складываться к концу XIX в., когда швейцарский хирург Т. Кохер в 1883 г. описал признаки умственной отсталости (кретинизма) у ребенка, развившиеся после удаления у него этого органа.

В 1896 г. А. Бауман установил высокое содержание иода в железе и обратил внимание исследователей на то, что еще древние китайцы успешно лечили кретинизм золой морских губок, содержащей большое количество иода. Экспериментальному изучению щитовидная железа была впервые подвергнута в 1927 г. Девять лет спустя была сформулирована концепция о ее внутрисекреторной функции.

В настоящее время известно, что щитовидная железа состоит из двух долей, соединенных узким перешейком. Ото самая крупная железа внутренней секреции. У взрослого человека ее масса составляет 25- 60 г; располагается она спереди и по бокам от гортани. Ткань железы состоит в основном из множества клеток - тироци-тов, объединяющихся в фолликулы (пузырьки). Полость каждого такого пузырька заполнена продуктом деятельности тироцитов - коллоидом. К фолликулам снаружи прилегают кровеносные сосуды, откуда в клетки поступают исходные вещества для синтеза гормонов. Именно коллоид дает возможность организму какое-то время обходиться без иода, поступающего обычно с водой, продуктами питания, вдыхаемым воздухом. Однако при длительном дефиците иода производство гормонов нарушается.

Главный гормональный продукт щитовидной железы - тироксин. Другой гормон - трииодтирании - лишь в малом количестве продуцируется щитовндаой железой. Он образуется в основном из тироксина после отщепления от него одного атома иода. Этот процесс происходит во многих тканях (особенно в печени) и играет важную роль в поддержании гормонального равновесия организма, поскольку трииодтиронин значительно активнее тироксина.

Заболевания, связанные с нарушениями функционирования щитовидной железы, могут возникать не только при изменениях в самой железе, но и при нехватке в организме иода, а также заболеваниях передней доли гипофиза и др.

При снижении функций (гипофункции) щитовидной железы в детстве развивается кретинизм, характеризующийся торможением в развитии всех систем организма, малым ростом, слабоумием. У взрослого человека при нехватке гормонов щитовидной железы возникает микседема, при которой наблюдаются отеки, слабоумие, понижение иммунитета, слабость. Данное заболевание хорошо поддается лечению препаратами гормонов щитовидной железы. При повышенной выработке гормонов щитовидной железы возникает базедова болезнь, при которой резко возрастает возбудимость, интенсивность обмена веществ, частота сердечных сокращений, развивается пучеглазие (экзофтальм) и происходит потеря веса. В тех географических зонах, где вода содержит мало иода (обычно это встречается в горах), у населения часто наблюдается зоб - заболевание, при котором секретирующая ткань щитовидной железы разрастается, но не может в отсутствие необходимого количества иода синтезировать полноценные гормоны. В таких районах потребление иода населением должно быть повышенным, что может быть обеспечено, например, использованием поваренной соли с обязательными небольшими добавками иодида натрия.

Гормон роста

Впервые предположение о выделении гипофизом специфического гормона роста было высказано в 1921 г. группой американских ученых. В эксперименте им удалось стимулировать рост крыс до размеров, вдвое превышающих обычные, путем ежедневного введения экстракта гипофиза. В чистом виде гормон роста был выделен только в 1970-е гг., сначала из гипофиза быка, а затем - лошади и человека. Этот гормон воздействует не на одну какую-то железу, а на весь организм.

Рост человека - величина непостоянная: он увеличивается до 18-23 лет, сохраняется неизменным примерно до 50 лет, а затем каждые 10 лет уменьшается на 1-2 см.

Кроме того, показатели роста варьируют у разных людей. Для «условного человека» (такой термин принят Всемирной организацией здравоохранения при определении различных параметров жизнедеятельности) средний рост составляет 160 см у женщин и 170 см у мужчин. А вот человек ниже 140 см или выше 195 см считается уже очень низким или очень высоким.

При недостатке гормона роста у детей развивается гипофизарная карликовость, а при переизбытке - гипофизарный гигантизм. Самым высоким гипофизарным гигантом, рост которого точно измерен, был американец Р. Уодлоу (272 см).

Если же избыток этого гормона наблюдается у взрослого человека, когда нормальный рост уже прекратился, возникает заболевание акромегалия, при котором разрастаются нос, губы, пальцы рук и ног и некоторые другие части тела.

Проверьте свои знания

  1. В чем суть гуморальной регуляции процессов, происходящих в организме?
  2. Какие железы относятся к железам внутренней секреции?
  3. Каковы функции надпочечников?
  4. Назовите основные свойства гормонов.
  5. В чем заключается функция щитовидной железы?
  6. Какие вы знаете железы смешанной секреции?
  7. Куда поступают гормоны, выделяемые железами внутренней секреции?
  8. Какова функция поджелудочной железы?
  9. Перечислите функции околощитовидных желез.

Подумайте

К чему может привести недостаток гормонов, выделяемых организмом?

Железы внутренней секреции выделяют непосредственно в кровь гормоны - биоло! ически активные вещества. Гормоны регулируют обмен веществ, рост, развитие организма и работу его органов.

Важнейшие понятия теории физиологических регуляций.

Прежде чем рассматривать механизмы нейрогуморальных регу­ляций, остановимся на важнейших понятиях этого раздела фи­зиологии. Некоторые из них разработаны кибернетикой. Зна­ние таких понятий облегчает понимание регуляций физиологи­ческих функций и решение ряда проблем в медицине.

Физиологическая функция - проявление жизнедеятель­ности организма или его структур (клетки, органа, системы клеток и тканей), направленное на сохранение жизни и выпол­нение генетически и социально обусловленных программ.

Система - совокупность взаимодействующих элементов, осуществляющих функцию, которая не может быть выполнена одним отдельным элементом.

Элемент - структурная и функциональная единица системы.

Сигнал - разнообразные виды вещества и энергии, пере­дающие информацию.

Информация сведения, сообщения, передаваемые по каналам связи и воспринимаемые организмом.

Раздражитель - фактор внешней или внутренней среды, воздействие которого на рецепторные образования организма вызывает изменение процессов жизнедеятельности. Раздражи­тели подразделяют на адекватные и неадекватные. К восприятиюадекватных раздражителей рецепторы организма приспо­соблены и активируются при очень малой энергии воздействую­щего фактора. Например, для активации рецепторов сетчатки глаза (палочек и колбочек) достаточно 1 -4 кванта света.Неадекватными являются раздражители, к восприятию которых чувствительные элементы организма не приспособлены. Например, колбочки и палочки сетчатки глаза не приспособлены к восприятию механических воздействий и не обеспечивают появления ощущения даже при значительной силе воздействия на них. Лишь при очень большой силе воздействия (удар) может произойти их активация и возникновение ощущения света.

Раздражители подразделяют также по их силе на подпоро- говые, пороговые и сверхпороговые. Сила подпороговых раздражителей недостаточна для возникновения регистри­руемой ответной реакции организма или его структур. Поро­говым раздражителем называют такой, минимальная сила которого достаточна для возникновения выраженной ответной реакции. Сверхпороговые раздражители имеют большую силу, чем пороговые раздражители.

Раздражитель и сигнал - сходные, но не однозначные по­нятия. Один и тот же раздражитель может иметь разное сиг­нальное значение. Например, писк зайца может быть сигна­лом, предупреледающим об опасности сородичей, но для лисы этот же звук - сигнал о возможности добычи пищи.

Раздражение - воздействие факторов окружающей или внутренней среды на структуры организма. Надо отметить, что в медицине термин "раздражение" иногда применяется и в другом смысле - для обозначения ответной реакции организ­ма или его структур на действие раздражителя.

Рецепторы молекулярные или клеточные структуры, воспринимающие действие факторов внешней или внутренней среды и передающие информацию о сигнальном значении раз­дражителя на последующие звенья регуляторного контура.

Понятие рецепторы рассматривается с двух точек зрения: с молекулярно-биологической и морфофункциональной. В по­следнем случае говорят о сенсорных рецепторах.

С молекулярно-биологической точки зрения рецепторы - специализированные белковые молекулы, встроенные в кле­точную мембрану или находящиеся в цитозоле и ядре. Каждый вид таких рецепторов способен взаимодействовать только со строго определенными сигнальными молекулами - лиганда- ми. Например, для так называемых адренорецепторов лиган- дом являются молекулы гормона адреналина и норадреналина. Такие рецепторы встроены в мембраны многих клеток орга­низма. Роль лигандов в организме выполняют биологически активные вещества: гормоны, нейромедиаторы, факторы рос­та, цитокины, простагландины. Они выполняют свою сигналь­ную функцию, находясь в биологических жидкостях в очень малых концентрациях. Например, содержание гормонов в кро­ви обнаруживается в пределах Ю -7 -10" 10 моль/л.

С морфофункциональной точки зрения рецепторы (сен­сорные рецепторы) - это специализированные клетки или нервные окончания, функцией которых является восприятие действия раздражителей и обеспечение возникновения воз­буждения в нервных волокнах. В таком понимании термин "ре­цептор" чаще всего применяется в физиологии, когда речь идет о регуляциях, обеспечиваемых нервной системой.

Совокупность однотипных сенсорных рецепторов и область организма, в которой они сосредоточены, называют рецеп­тор ным полем.

Функцию сенсорных рецепторов в организме выполняют:

    специализированные нервные окончания. Они могут быть свободными, не покрытыми оболочками (например, бо­левые рецепторы кожи) или иметь оболочку (например, так­тильные рецепторы кожи);

    специализированные нервные клетки (нейросенсорные клетки). У человека такие сенсорные клетки имеются в слое эпителия, выстилающего поверхность носовой полости; они обеспечивают восприятие пахучих веществ. В сетчатке глаза нейросенсорные клетки представлены колбочками и палочка­ми, которые воспринимают световые лучи;

3) специализированные эпителиальные клетки - это раз­вивающиеся из эпителиальной ткани клетки, которые приоб­рели высокую чувствительность к действию определенных ви­дов раздражителей и могут передавать информацию об этих раздражителях на нервные окончания. Такие рецепторы име­ются во внутреннем ухе, вкусовых луковицах языка и вестибу­лярном аппарате, обеспечивая возможность восприятия соот­ветственно звуковых волн, вкусовых ощущений, положения и движения тела.

Регулирование постоянный контроль и необходимая коррекция функционирования системы и ее отдельных струк­тур с целью достижения полезного результата.

Физиологическая регуляция - процесс, обеспечиваю­щий сохранение относительного постоянства или изменение в желательном направлении показателей гомеостаза и жизнен­ных функций организма и его структур.

Для физиологических регуляций жизненных функций орга­низма характерны следующие черты.

Наличие замкнутых контуров регулирования. В про­стейший регуляторный контур (рис. 2.1) входят блоки: регу­лируемый параметр (например, уровень содержания глюко­зы в крови, величина кровяного давления), управляющее устройство - в целостном организме это нервный центр, в отдельной клетке - геном, эффекторы - органы и системы, которые под влиянием сигналов от управляющего устройства изменяют свою работу и непосредственно влияют на величину регулируемого параметра.

Взаимодействие отдельных функциональных блоков такой регуляторной системы осуществляется по каналам прямой и обратной связи. По каналам прямой связи информация пере­дается от управляющего устройства к эффекторам, а по кана­лам обратной связи - от рецепторов (датчиков), контролиру-

Рис. 2.1. Схема замкнутого контура регулирования

ющих величину регулируемого параметра, - к управляющему устройству (например, от рецепторов скелетных мышц - к спинному и головному мозгу).

Таким образом, обратная связь (ее в физиологии еще назы­вают обратной афферентацией) обеспечивает поступление к управляющему устройству сигнализации о величине (состоя­нии) регулируемого параметра. Она обеспечивает контроль за ответом эффекторов на управляющий сигнал и результатом действия. Например, если целью движения руки человека бы­ло раскрытие учебника физиологии, то обратная связь осу­ществляется проведением импульсации по афферентным нервным волокнам от рецепторов глаз, кожи и мышц в голов­ной мозг. Такая импульсация обеспечивает возможность сле­жения за движениями руки. Благодаря этому нервная система может осуществлять коррекцию движения для достижения не­обходимого результата действия.

С помощью обратной связи (обратной афферентации) про­исходит замыкание регуляторного контура, объединение его элементов в замкнутую цепь - систему элементов. Только при наличии замкнутого контура регулирования возможно осу­ществление устойчивой регуляции параметров гомеостаза и приспособительных реакций.

Обратную связь подразделяют на отрицательную и поло­жительную. В организме подавляющее число обратных связей - отрицательные. Это значит, что под влиянием поступающей по их каналам информации регулирующая система возвращает отклонившийся параметр к исходному (нормальному) значе­нию. Таким образом, отрицательная обратная связь необходи­ма для сохранения устойчивости уровня регулируемого пока­зателя. В противоположность этому положительная обратная связь способствует изменению величины регулируемого пара­метра, переводу его на новый уровень. Так, в начале интенсив­ной мышечной нагрузки импульсация от рецепторов скелет­ных мышц способствует развитию увеличения уровня артери­ального кровяного давления.

Функционирование нейрогуморальных механизмов регуля­ции в организме не всегда направлено только на удержание го- меостатических констант на неизменном, строго стабильном уровне. В ряде случаев для организма жизненно важно, чтобы регулирующие системы перестроили свою работу и изменили величину гомеостатической константы, изменили так называ­емую «установочную точку» регулируемого параметра.

Установочная точка (англ. set point). Это тот уровень регулируемого параметра, на котором регулирующая система стремится удерживать величину этого параметра.

Понимание наличия и направленности изменений устано­вочной точки гомеостатических регуляций помогает опреде­лить причину возникновения патологических процессов в ор­ганизме, прогнозировать их развитие и найти правильный путь лечения и профилактики.

Рассмотрим это на примере оценки температурных реакций организма. Даже когда человек здоров, то величина темпера­туры сердцевины тела на протяжении суток колеблется между 36 °С и 37 °С, причем в вечерние часы - ближе к 37 °С, ночью и ранним утром - к 36 °С. Это свидетельствует о наличии цир- кадного ритма изменения величины установочной точки тер­морегуляции. Но особенно ярко заявляет о себе наличие изме­нений установочной точки температуры сердцевины тела при ряде заболеваний человека. Например, при развитии инфек­ционных заболеваний терморегуляторные центры нервной системы получают сигнализацию о появлении в организме бактериальных токсинов и перестраивают свою работу так, чтобы повысить уровень температуры тела. Такая реакция ор­ганизма на внедрение инфекции выработана филогенетически. Она полезна, так как при повышенной температуре иммунная система функционирует активнее, а условия развития инфек­ции ухудшаются. Вот почему не всегда следует назначать жа­ропонижающие средства при развитии лихорадки. Но по­скольку очень высокая температура сердцевины тела (более 39 °С, особенно у детей) может быть опасна для организма (прежде всего в плане повреждений нервной системы), то в каждом отдельном случае врач должен принимать индивиду­альное решение. Если при температуре тела 38,5 - 39 °С име­ются такие признаки, как мышечная дрожь, озноб, когда чело­век кутается в одеяло, стремится согреться, то ясно, что меха­низмы терморегуляции продолжают мобилизацию всех источ­ников теплопродукции и способов сохранения тепла в организме. Это значит, что еще не достигнута установочная точка и в ближайшее время температура тела будет расти, до­стигая опасных границ. Но если при той же температуре у больного появилось обильное потоотделение, исчезла мышеч­ная дрожь и он раскрывается, то ясно, что установочная точка уже достигнута и механизмы терморегуляции будут препят­ствовать дальнейшему повышению температуры. В такой си­туации врач на определенное время в ряде случаев может воз­держаться от назначения жаропонижающих средств.

Уровни регулирующих систем. Выделяют следующие уровни:

    субклеточный (например, саморегуляция цепочек биохи­мических реакций, объединенных в биохимические циклы);

    клеточный - регуляция внутриклеточных процессов с помощью биологически активных веществ (аутокриния) и ме­таболитов;

    тканевый (паракриния, креаторные связи регуляция взаимодействия клеток: слипание, объединение в ткань, синх­ронизацию деления и функциональной активности);

    органный - саморегуляция отдельных органов, функци­онирование их как единого целого. Такие регуляции осущест­вляются как за счет гуморальных механизмов (паракриния, креаторные связи), так и нервных клеток, тела которых на­ходятся во внутриорганных вегетативных ганглиях. Эти нейроны взаимодействуют, составляя внутриорганные реф­лекторные дуги. Вместе с тем через них реализуются и регу- ляторные влияния центральной нервной системы на внутрен­ние органы;

    организменный регуляция гомеостаза, целостность организма, формирование регуляторных функциональных систем, обеспечивающих целесообразные поведенческие реакции, приспособление организма к изменениям условий окружающей среды.

Таким образом, в организме существует много уровней регулирующих систем. Простейшие системы организма объ­единяются в более сложные, способные выполнять новые функции. При этом простые системы, как правило, подчиня­ются управляющим сигналам со стороны более сложных сис­тем. Такое подчинение называют иерархией регулирующих систем.

Более подробно механизмы осуществления этих регуляций будут рассмотрены ниже.

Единство и отличительные особенности нервных и гумо­ральных регуляций. Механизмы регуляции физиологических функций традиционно подразделяют на нервные и гумораль­

ные, хотя в действительности они образуют единую регулятор- ную систему, обеспечивающую поддержание гомеостаза и приспособительную деятельность организма. Эти механизмы имеют многочисленные связи как на уровне функционирова­ния нервных центров, так и при передаче сигнальной информа­ции эффекторным структурам. Достаточно сказать, что при осуществлении простейшего рефлекса как элементарного ме­ханизма нервных регуляций передача сигнализации с одной клетки на другую осуществляется посредством гуморальных факторов - нейромедиаторов. Чувствительность сенсорных рецепторов к действию раздражителей и функциональное со­стояние нейронов изменяется поддействием гормонов, нейро­медиаторов, ряда других биологически активных веществ, а также простейших метаболитов и минеральных ионов (К + Na + СаCI -). В свою очередь, нервная система может за­пускать или выполнять коррекцию гуморальных регуляций. Гуморальные регуляции в организме находятся под контролем нервной системы.

Особенности нервных и гуморальных регуляций в организме. Гуморальные механизмы филогенетически более древние, они имеются даже у одноклеточных животных и при­обретают большое разнообразие у многоклеточных и особенно у человека.

Нервные механизмы регуляций образовались филогенети­чески более поздно и формируются постепенно в онтогенезе человека. Такие регуляции возможны лишь в многоклеточных структурах, имеющих нервные клетки, объединяющиеся в нервные цепи и составляющие рефлекторные дуги.

Гуморальные регуляции осуществляются путем распро­странения сигнальных молекул в жидкостях организма по прин­ципу "всем, всем, всем", или принципу "радиосвязи"

Нервные регуляции осуществляются по принципу "письмо с адресом", или "телеграфной связи" Сигнализация передает­ся от нервных центров к строго определенным структурам, на­пример к точно определенным мышечным волокнам или их группам в конкретной мышце. Только в этом случае возможны целенаправленные, координированные движения человека.

Гуморальные регуляции, как правило, осуществляются медленнее, чем нервные. Скорость проведения сигнала (по­тенциала действия) в быстрых нервных волокнах достигает 120 м/с, вто время как скорость транспорта сигнальной моле-

кулы с током крови в артериях приблизительно в 200 раз, а в капиллярах - в тысячи раз меньше.

Приход нервного импульса к органу-эффектору практически мгновенно вызывает физиологический эффект (например, со­кращение скелетной мышцы). Реакция на многие гормональ­ные сигналы более медленная. Например, проявление ответной реакции на действие гормонов щитовидной железы и коры над­почечников происходит через десятки минут и даже часы.

Гуморальные механизмы имеют преимущественное значе­ние в регуляции процессов обмена веществ, скорости деления клеток, роста и специализации тканей, полового созревания, адаптации к изменению условий внешней среды.

Нервная система в здоровом организме оказывает влияние на все гуморальные регуляции, осуществляет их коррекцию. Вместе с тем у нервной системы имеются свои специфические функции. Она регулирует жизненные процессы, требующие быстрых реакций, обеспечивает восприятие сигналов, прихо­дящих от сенсорных рецепторов органов чувств, кожи и внут­ренних органов. Регулирует тонус и сокращения скелетных мышц, которые обеспечивают поддержание позы и перемеще­ние тела в пространстве. Нервная система обеспечивает про­явление таких психических функций, как ощущение, эмоции, мотивации, память, мышление, сознание, регулирует поведен­ческие реакции, направленные на достижение полезного при­способительного результата.

Несмотря на функциональное единство и многочисленные взаимосвязи нервных и гуморальных регуляций в организме, в целях удобства изучения механизмов осуществления этих ре­гуляций рассмотрим их в отдельности.

Характеристика механизмов гуморальной регуля­ции в организме. Гуморальные регуляции осуществляются за счет передачи сигналов с помощью биологически активных ве­ществ через жидкие среды организма. К биологически актив­ным веществам организма относят: гормоны, нейромедиаторы, простагландины, цитокины, факторы роста, эндотелии, азота оксид и ряд других веществ. Для выполнения их сигнальной функции достаточно очень малого количества этих веществ. На­пример, гормоны выполняют свою регуляторную роль при кон­центрации их в крови в пределах Ю -7 -10 0 моль/л.

Гуморальные регуляции подразделяют на эндокринные и местные.

Эндокринные регуляции осуществляются благодаря функ­ционированию желез внутренней секреции (эндокринных же­лез), которые представляют собой специализированные орга­ны, выделяющие гормоны. Гормоны - биологически актив­ные вещества, вырабатываемые эндокринными железами, пе­реносимые кровью и оказывающие специфические регуляторные влияния на жизнедеятельность клеток и тканей. Отличительной особенностью эндокринных регуляций являет­ся то, что железы внутренней секреции выделяют гормоны в кровь и таким путем эти вещества доставляются практически ко всем органам и тканям. Однако ответная реакция на дей­ствие гормона может быть лишь со стороны тех клеток (мише­ней), на мембранах, в цитозоле или ядре которых имеются ре­цепторы к соответствующему гормону.

Отличительной особенностью местных гуморальных регуляций является то, что биологически активные вещест­ва, вырабатываемые клеткой, не поступают в кровоток, а действуют на продуцирующую их клетку и ее ближайшее окру­жение, распространяясь за счет диффузии по межклеточной жидкости. Такие регуляции подразделяют на регуляцию обме­на веществ в клетке за счет метаболитов, аутокринию, пара- кринию, юкстакринию, взаимодействия через межклеточные контакты.

    Регуляция обмена веществ в клетке за счет метабо­литов. Метаболиты - конечные и промежуточные продукты процессов обмена веществ в клетке. Участие метаболитов в регуляции клеточных процессов обусловлено наличием в об­мене веществ цепочек функционально связанных биохимиче­ских реакций - биохимических циклов. Характерно, что уже в таких биохимических циклах имеются главные признаки био­логических регуляций, наличие замкнутого контура регулиро­вания и отрицательной обратной связи, обеспечивающей за­мыкание этого контура. Например, цепочки таких реакций ис­пользуются при синтезе ферментов и веществ, участвующих в образовании аденозинтрифосфорной кислоты (АТФ). АТФ- вещество, в котором аккумулируется энергия, легко использу­емая клетками для самых разных процессов жизнедеятельнос­ти: движения, синтеза органических веществ, роста, транспор­та веществ через клеточные мембраны.

    Аутокринный механизм. При таком типе регуляций синтезированная в клетке сигнальная молекула выходит через

Рецептор r t Эндокриния

о? м ooo

Аугокриния Паракриния Юкстакриния t

Рис. 2.2. Виды гуморальных регуляций в организме

клеточную мембрану в межклеточную жидкость и связывается с рецептором на наружной поверхности мембраны (рис. 2.2). Та­ким образом клетка реагирует на синтезированную в ней же сиг­нальную молекулу - лиганд. Присоединение лиганда к рецептору на мембране вызывает активацию этого рецептора, а он запуска­ет целый каскад биохимических реакций в клетке, которые обес­печивают изменение ее жизнедеятельности. Аутокринная регуля­ция часто используется клетками иммунной и нервной систем. Этот путь ауторегуляции необходим для поддержания стабильно­го уровня секреции некоторых гормонов. Например, в предотвра­щении избыточной секреции инсулина Р-клетками поджелудоч­ной железы имеет значение тормозное действие секретируемого ими же гормона на активность этих клеток.

Паракринный механизм. Осуществляется путем сек­реции клеткой сигнальных молекул, которые выходят в меж­клеточную жидкость и влияют на жизнедеятельность сосед­них клеток (рис. 2.2). Отличительной чертой этого вида регу­ляций является то, что в передаче сигнала имеется этап диф­фузии молекулы лиганда через межклеточную жидкость от одной клетки к другим соседним клеткам. Так, клетки подже­лудочной железы, секретирующие инсулин, влияют на клетки этой железы, секретирующие другой гормон глюкагон. Факторы роста и интерлейкины влияют на клеточное деле­ние, простагландины - на тонус гладких мышц, мобилизацию Са 2+ Такой тип передачи сигналов важен в регуляции роста тканей при развитии эмбриона, заживлении ран, для роста поврежденных нервных волокон и при передаче возбуждения в синапсах.

Исследованиями последних лет показано, что некоторые клетки (особенно нервные) для сохранения своей жизнедея­тельности должны постоянно получать специфические сигна-

ЛЬ1 от соседних клеток. Среди таких специфических сигналовособенноважны вещества - факторы роста(NGF). При дли­тельномотсутствии воздействия этих сигнальных молекулнервныеклетки запускают программу самоуничтожения. Та­кой механизм клеточной смерти называют апоптозом.

Паракринная регуляция часто используется одновременно с аутокринной. Например, при передаче возбуждения в синап­сах сигнальные молекулы, выделяемые нервным окончанием, связываютсяне только с рецепторами соседней клетки (на постсинаптической мембране), но и с рецепторами на мембра­не этого же нервного окончания (т.е. пресинаптической мем­бране).

    Юкстакринный механизм. Осуществляется путем передачи сиг­нальных молекул непосредственно от наружной поверхности мембраны одной клетки на мембрану другой. Это происходит при условии непо­средственного контакта (прикрепления, адгезионного сцепления) мем­бран двух клеток. Такое прикрепление происходит, например, при взаи­модействии лейкоцитов и тромбоцитов с эндотелием кровеносных капил­ляров в месте, где имеется воспалительный процесс. На мембранах, выстилающих капилляры клеток, в месте воспаления появляются сиг­нальные молекулы, которые связываются с рецепторами определенных видов лейкоцитов. Такая связь приводит к активации прикрепления лейко­цитов к поверхности кровеносного сосуда. За этим может последовать це­лый комплекс биологических реакций, обеспечивающих переход лейкоци­тов из капилляра в ткань и подавление ими воспалительной реакции.

    Взаимодействия через межклеточные контакты. Осущест­вляются через межмембранные соединения (вставочные диски, нексу­сы). В частности, весьма распространена передача сигнальных молекул и некоторых метаболитов через щелевые контакты - нексусы. При обра­зовании нексусов особые белковые молекулы (коннексоны) клеточной мембраны объединяются по 6 штук так, что формируют кольцо с порой внутри. На мембране соседней клетки (точно напротив) формируется та­кое же кольцевидное образование с порой. Две центральные поры, объ­единяясь, формируют канал, пронизывающий мембраны соседних клеток. Ширина канала достаточна для прохождения многих биологически актив­ных веществ и метаболитов. Через нексусы свободно проходят ионы Са 2+ являющиеся мощными регуляторами внутриклеточных процессов.

Благодаря высокой электропроводности нексусы способствуют рас­пространению локальных токов между соседними клетками и формиро­ванию функционального единства ткани. Особенно выражены такие взаимодействия в клетках сердечной мышцы и гладких мышц. Нарушение состояния межклеточных контактов приводит к патологии сердца, изме­

нению тонуса мышц сосудов, слабости сокращения матки н изменению ряда других регуляций.

Межклеточные контакты, выполняющие роль упрочения физической связи между мембранами, называют плотными соединениями и адгезион­ными поясами. Такие контакты могут иметь вид кругового пояса, прохо­дящего между боковыми поверхностями клетки. Уплотнение и увеличе­ние прочности этих соединений обеспечивается прикреплением на по­верхности мембран белков миозина, актинина, тропомиозина, винкулина и др. Плотные соединения способствуют объединению клеток в ткань, их слипанию и устойчивости ткани к механическим воздействиям. Они участвуют также в формировании барьерных образований организма. Плотные контакты особенно выражены между эндотелием, выстилаю­щим сосуды головного мозга. Они уменьшают проницаемость этих сосу­дов для циркулирующих в крови веществ.

Во всех гуморальных регуляциях, осуществляемых с учас­тием специфических сигнальных молекул, важную роль игра­ют клеточные и внутриклеточные мембраны. Поэтому для по­нимания механизма гуморальных регуляций необходимо знать элементы физиологии клеточных мембран.

Рис. 2.3. Схема строения клеточной мембраны

Белок-переносчик

(вторично-активный

транспорт)

Мембранный белок

Белок РКС

Двойной слой фосфолипидов

Антигены

Внеклеточная поверхность

Внутриклеточная среда

Особенности строения и свойства клеточных мембран. Для всех клеточных мембран характерен один принцип строе­ния (рис. 2.3). Их основу составляют два слоя липидов (моле­кул жиров, среди которых больше всего фосфолипидов, но имеется также холестерол и гликолипиды). Молекулы мем­бранных липидов имеют головку (участок, притягивающий во­ду и стремящийся взаимодействовать с ней, называемый гид­

рофильным) и хвост, который является гидрофобным (оттал­кивается от молекул воды, избегает их соседства). В результа­те такого различия свойств головки и хвоста липидных молекул последние при попадании на поверхность воды выстраиваются рядами: головка к головке, хвост к хвосту и образуют двойной слой, в котором гидрофильные головки обращены к воде, а гид­рофобные хвосты - друг к другу. Хвосты находятся внутри этого двойного слоя. Наличие липидного слоя образует замкнутое пространство, изолирует цитоплазму от окружающей водной среды и создает препятствие для прохождения воды и раствори­мых в ней веществ через клеточную мембрану. Толщина такого липидного бислоя составляет около 5 нм.

В состав мембран также входят белки. Их молекулы по объему и по массе в 40-50 раз больше, чем молекулы мем­бранных липидов. За счет белков толщина мембраны достига­ет?-10 нм. Несмотря на то что суммарные массы белков и ли­пидов в большинстве мембран почти равны, количество моле­кул белков в мембране в десятки раз меньше, чем молекул липидов. Обычно белковые молекулы расположены разроз­ненно. Они как бы растворены в мембране, могут в ней сме­щаться и изменять свое положение. Это послужило поводом к тому, что строение мембраны назвали жидкостно-мозаич­ным. Молекулы липидов тоже могут смещаться вдоль мембра­ны и даже перепрыгивать из одного липидного слоя в другой. Следовательно, мембрана имеет признаки текучести и вместе с тем обладает свойством самосборки, может восстанавли­ваться после повреждений за счет свойства липидных молекул выстраиваться в двойной липидный слой.

Белковые молекулы могут пронизывать всю мембрану так, что их концевые участки выступают за ее поперечные пределы. Такие белки называют трансмембранными или интеграль­ными. Есть также белки, только частично погруженные в мем­брану или располагающиеся на ее поверхности.

Белки клеточных мембран выполняют многочисленные функции. Для осуществления каждой функции геном клетки обеспечивает запуск синтеза специфического белка. Даже в относительно просто устроенной мембране эритроцита имеет­ся около 100 разных белков. Среди важнейших функций мем­бранных белков отмечаются: 1) рецепторная - взаимодей­ствие с сигнальными молекулами и передача сигнала в клетку; 2) транспортная - перенос веществ через мембраны и обес­печение обмена между цитозолем и окружающей средой. Су­ществует несколько разновидностей белковых молекул (транслоказ), обеспечивающих трансмембранный транспорт. Среди них есть белки, формирующие каналы, которые прони­зывают мембрану и через них идет диффузия определенных ве­ществ между цитозолем и внеклеточным пространством. Та­кие каналы чаще всего ионоселективные, т.е. пропускают ио­ны только одного вещества. Есть также каналы, избиратель­ность которых меньшая, например они пропускают ионы Na + и К + , К + и С1~. Есть также белки-переносчики, которые обес­печивают транспорт вещества через мембрану за счет измене­ния своего положения в этой мембране; 3) адгезивная - белки совместно с углеводами участвуют в осуществлении адгезии (слипание, склеивание клеток при иммунных реакциях, объ­единение клеток в слои и ткани); 4) ферментативная - некото­рые встроенные в мембрану белки выполняют роль катализа­торов биохимических реакций, протекание которых возможно только в контакте с клеточными мембранами; 5) механическая - белки обеспечивают прочность и эластичность мембран, их связь с цитоскелетом. Например, в эритроцитах такую роль выполняет белок спектрин, который в виде сетчатой структу­ры прикреплен к внутренней поверхности мембраны эритро­цита и имеет связь с внутриклеточными белками, составляю­щими цитоскелет. Это придает эритроцитам эластичность, способность менять и восстанавливать форму при прохожде­нии через кровеносные капилляры.

Углеводы составляют лишь 2-10% от массы мембраны, количество их в разных клетках изменчиво. Благодаря углево­дам осуществляются некоторые виды межклеточных взаимо­действий, они принимают участие в узнавании клеткой чуже­родных антигенов и совместно с белками создают своеобраз­ную антигенную структуру поверхностной мембраны соб­ственной клетки. По таким антигенам клетки узнают друг друга, объединяются в ткань и на короткое время слипаются для пере­дачи сигнальных молекул. Соединения белков с сахарами назы­вают гликопротеинами. Если же углеводы соединяются с липи- дами, то такие молекулы называют гликолипидами.

Благодаря взаимодействию входящих в мембрану веществ и относительной упорядоченности их расположения клеточная мембрана приобретает ряд свойств и функций, не сводимых к простой сумме свойств образующих ее веществ.

Функцииклеточных мембран и механизмы их реализа-

К основным функциям клеточных мембран относят- с оздание оболочки (барьера), отделяющего цитозоль от

^жающей среды, и определение границ и формы клетки;о\ беспечениемежклеточных контактов, сопровождающихсяпанием мембран (адгезия). Межклеточная адгезия важна ° я объединенияоднотипных клеток в ткань, образования гис-гематических барьеров, осуществления иммунных реакций;^ч 0 бнару>кение сигнальных молекул и взаимодействие с ними, а такжепередача сигналов внутрь клетки; 4) обеспечение мем­браннымибелками-ферментами катализа биохимическихреакций, идущих в примембранном слое. Некоторые из этихбелковвыполняют также и роль рецепторов. Связь лиганда стакимрецептором активирует его ферментативные свойства; 5) обеспечение поляризации мембраны, генерация разностиэлектрических потенциалов между наружной и внутреннейстороной мембраны; 6) создание иммунной специфичности клетки за счет наличия в структуре мембраны антигенов. Роль антигенов, как правило, выполняют выступающие над поверх­ностью мембраны участки белковых молекул и связанные с ними молекулы углеводов. Иммунная специфичность имеет значение при объединении клеток в ткань и взаимодействии с клетками, осуществляющими иммунный надзор в организме; 7) обеспечение избирательной проницаемости веществ через мембрану и транспорта их между цитозолем и окружающей средой (см. ниже).

Приведенный перечень функций клеточных мембран сви­детельствует о том, что они принимают многогранное участие в механизмах нейрогуморальных регуляций в организме. Без знания ряда явлений и процессов, обеспечиваемых мембран­ными структурами, невозможно понимание и осознанное вы­полнение некоторых диагностических процедур и лечебных мероприятий. Например, для правильного применения многих лекарственных веществ необходимо знание того, в какой мере каяедое из них проникает из крови в тканевую жидкость и в ци­тозоль.

Диффуз ия и транспорт веществ через клеточные Мембраны. Переход веществ через клеточные мембраны осу- ствляется за счет разных видов диффузии, или активного

транспорта.

Простая диффузия осуществляется за счет градиентов концентрации определенного вещества, электрического заря­да или осмотического давления между сторонами клеточной мембраны. Например, среднее содержание ионов натрия в плазме крови составляет 140 мМ/л, а в эритроцитах - при­близительно в 12 раз меньше. Эта разность концентрации (градиент) создает движущую силу, которая обеспечивает пе­реход натрия из плазмы в эритроциты. Однако скорость такого перехода мала, так как мембрана имеет очень низкую прони­цаемость для ионовNa + Гораздо больше проницаемость этой мембраны для калия. На процессы простой диффузии не за­трачивается энергия клеточного метаболизма. Прирост скоро­сти простой диффузии прямо пропорционален градиенту кон­центрации вещества между сторонами мембраны.

Облегченная диффузия, как и простая, идет по градиенту концентрации, но отличается от простой тем, что в переходе ве­щества через мембрану обязательно участвуют специфические молекулы-переносчики. Эти молекулы пронизывают мембрану (могут формировать каналы) или, по крайней мере, с ней связа­ны. Транспортируемое вещество должно связаться с перенос­чиком. После этого переносчик меняет свою локализацию в мембране или свою конформацию таким образом, что доставля­ет вещество на другую сторону мембраны. Если для трансмем­бранного перехода вещества необходимо участие переносчика, то вместо термина "диффузия" часто используют терминтранспорт вещества через мембрану.

При облегченной диффузии (в отличие от простой), если происходит увеличение градиента трансмембранной концентрации вещества, то ско­рость перехода его через мембрану возрастает лишь до момента, пока не будут задействованы все мембранные переносчики. При дальнейшем увеличении такого градиента скорость транспорта будет оставаться неиз­менной; это называют явлением насыщения. Примерами транспорта ве­ществ путем облегченной диффузии могут служить: перенос глюкозы из крови в мозг, реабсорбция аминокислот и глюкозы из первичной мочи в кровь в почечных канальцах.

Обменная диффузия - транспорт веществ, при котором может происходить обмен молекулами одного и того же ве­щества, находящимися по разные стороны мембраны. Концен­трация вещества с каждой стороны мембраны остается при этом неизменной.

Разновидностью обменной диффузии является обмен моле­кулы одного вещества на одну или более молекул другого ве­щества. Например, в гладкомышечных волокнах сосудов и бронхов одним из путей удаления ионов Са 2+ из клетки явля­ется обмен их на внеклеточные ионыNa + На три иона входя­щего натрия из клетки удаляется один ион кальция. Создается взаимообусловленное движение натрия и кальция через мем­брану в противоположных направлениях (этот вид транспорта называют антипортом). Таким образом клетка освобожда­ется от избыточного Са 2+ , а это является необходимым усло­вием для расслабления гладкомышечного волокна. Знание ме­ханизмов транспорта ионов через мембраны и способов влия­ния на этот транспорт - непременное условие не только для понимания механизмов регуляции жизненных функций, но и правильного выбора лекарственных препаратов для лечения большого числа заболеваний (гипертонической болезни, бронхиальной астмы, сердечных аритмий, нарушений водно- солевого обмена и др.).

Активный транспорт отличается от пассивного тем, что идет против градиентов концентрации вещества, используя энергию АТФ, образующуюся за счет клеточного метаболиз­ма. Благодаря активному транспорту могут преодолеваться си­лы не только концентрационного, но и электрического гради­ента. Например, при активном транспортеNa + из клетки на­ружу преодолевается не только концентрационный градиент (снаружи содержаниеNa + в 10-15 раз больше), но и сопро­тивление электрического заряда (снаружи клеточная мембра­на у абсолютного большинства клеток заряжена положитель­но, и это создает противодействие выходу положительно заря­женногоNa + из клетки).

Активный транспорт Na + обеспечивается белкомNa + , К + зависимой АТФазой. В биохимии окончание "аза" добавляется к названию белка в том случае, если он обладает ферментатив­ными свойствами. Таким образом, названиеNa + , К + -зависи- мая АТФаза означает, что это вещество - белок, который рас­щепляет аденозинтрифосфорную кислоту только при обяза­тельном наличии взаимодействия с ионамиNa + и К + Энер­гия, освобождаемая в результате расщепления АТФ, идет на вынос из клетки трех ионов натрия и транспорт внутрь клетки двух ионов калия.

Имеются также белки, осуществляющие активный транс­порт ионов водорода, кальция и хлора. В волокнах скелетных мышц Са 2+ -зависимая АТФаза встроена в мембраны сарко- плазматического ретикулума, который образует внутрикле­точные емкости (цистерны, продольные трубочки), накапли­вающие Са 2+ Кальциевый насос за счет энергии расщепле­ния АТФ переносит ионы Са 2+ из саркоплазмы в цистерны ре­тикулума и может создавать в них концентрацию Са + приближающуюся к 1(Г 3 М, т.е. в 10 ООО раз большую, чем в саркоплазме волокна.

Вторично-активный транспорт характеризуется тем, что перенос вещества через мембрану идет за счет градиента концентрации другого вещества, для которого имеется меха­низм активного транспорта. Чаще всего вторично-активный транспорт происходит за счет использования градиента на­трия, т.е.Na + идет через мембрану в сторону его меньшей кон­центрации и тянет за собой другое вещество. При этом обычно используется встроенный в мембрану специфический белок- переносчик.

Например, транспорт аминокислот и глюкозы из первичной мочи в кровь, осуществляемый в начальном участке почечных канальцев, про­исходит благодаря тому, что белок-переносчик мембраны канальцевого эпителия связывается с аминокислотой и ионом натрия и только тогда из­меняет свое положение в мембране таким образом, что переносит амино­кислоту и натрий в цитоплазму. Для наличия такого транспорта необхо­димо, чтобы снаружи клетки концентрация натрия была гораздо больше, чем внутри.

Для понимания механизмов гуморальных регуляций в орга­низме необходимо знание не только структуры и проницаемос­ти клеточных мембран для различных веществ, но и структуры и проницаемости более сложных образований, находящихся между кровью и тканями различных органов.

Физиология гистогематических барьеров (ГГБ). Гисто- гематические барьеры - это совокупность морфологических, физиологических и физико-химических механизмов, функцио­нирующих как единое целое и регулирующих взаимодействия крови и органов. Гистогематические барьеры участвуют в со­здании гомеостаза организма и отдельных органов. Благодаря наличию ГГБ каждый орган живет в своей особой среде, кото­рая может значительно отличаться от плазмы крови по составуотдельныхингредиентов. Особенно мощные барьеры сущест­вуют между кровью и мозгом, кровью и тканью половых желез,кровьюи камерной влагой глаза. Непосредственный контакт с кровьюимеет слой барьера, образованный эндотелием крове­носныхкапилляров, далее идет базальная мембрана сперици­тами (средний слой) изатем - адвентициальные клетки орга­нов и тканей (наружный слой). Гистогематические барьеры,изменяясвою проницаемость для различных веществ, могут ограничивать или же облегчать их доставку к органу. Для рядатоксичныхвеществ они непроницаемы. В этом проявляется их защитная функция.

Гематоэнцефалический барьер (ГЭБ) - это совокуп­ность морфологических структур, физиологических и физико- химических механизмов, функционирующих как единое целое и регулирующих взаимодействие крови и ткани мозга. Морфо­логической основой ГЭБ является эндотелий и базальная мембрана мозговых капилляров, интерстициальные элементы и гликокаликс, нейроглия, своеобразные клетки которой (аст- роциты) охватывают своими ножками всю поверхность капил­ляра. В барьерные механизмы входят также транспортные системы эндотелия капиллярных стенок, включающие пино- и экзоцитоз, эндоплазматическую сеть, образование каналов, ферментные системы, модифицирующие или разрушающие поступающие вещества, а также белки, выполняющие функ­цию переносчиков. В структуре мембран эндотелия капилля­ров мозга, так же как и в ряде других органов, обнаружены белки аквапорины, создающие каналы, избирательно пропус­кающие молекулы воды.

Капилляры мозга отличаются от капилляров других органов тем, что эндотелиальные клетки образуют непрерывную стенку. В местах контакта наружные слои эндотелиальных клеток сли­ваются, образуя так называемые плотные контакты.

Среди функций ГЭБ выделяют защитную и регулирующую. Он защищает мозг от действия чужеродных и токсичных ве­ществ, участвует в транспорте веществ между кровью и моз­гом и создает тем самым гомеостаз межклеточной жидкости мозга и ликвора.

Гематоэнцефалический барьер обладает избирательной проницаемостью для различных веществ. Некоторые биологи­чески активные вещества (например, катехоламины) практи­чески не проходят через этот барьер. Исключение составляют лишь небольшие участки барьера на границе с гипофизом, эпифизом и некоторыми участками гипоталамуса, где прони­цаемость ГЭБ для всех веществ высокая. В этих областях об­наружены пронизывающие эндотелий щели или каналы, по которым проникают вещества из крови во внеклеточную жид­кость мозговой ткани или в сами нейроны.

Высокая проницаемость ГЭБ в этих областях позволяет биологически активным веществам достигать тех нейронов ги­поталамуса и железистых клеток, на которых замыкается регу- ляторный контур нейроэндокринных систем организма.

Характерной чертой функционирования ГЭБ является ре­гуляция проницаемости для веществ адекватно сложившим­ся условиям. Регуляция идет за счет: 1) изменения площади открытых капилляров, 2) изменения скорости кровотока, 3) изменения состояния клеточных мембран и межклеточно­го вещества, активности клеточных ферментных систем, пино-и экзоцитоза.

Считается, что ГЭБ, создавая значительное препятствие для проникновения веществ из крови в мозг, вместе с тем хо­рошо пропускает эти вещества в обратном направлении из мозга в кровь.

Проницаемость ГЭБ для различных веществ сильно разли­чается. Жирорастворимые вещества, как правило, проникают через ГЭБ легче, чем водорастворимые. Относительно легко проникают кислород, углекислый газ, никотин, этиловый спирт, героин, жирорастворимые антибиотики (хлорамфени- кол и др.).

Нерастворимые в липидах глюкоза и некоторые незаменимые амино­кислоты не могут проходить в мозг путем простой диффузии. Они узнают­ся и транспортируются специальными переносчиками. Транспортная система настолько специфична, что различает стереоизомеры D- иL-глюкозы.D-глюкоза транспортируется, аL-глюкоза - нет. Этот транс­порт обеспечивается встроенными в мембрану белками-переносчиками. Транспорт нечувствителен к инсулину, но подавляется цитохолазином В.

Аналогичным образом транспортируются большие нейтральные ами­нокислоты (например, фенилаланин).

Есть и активный транспорт. Например, за счет активного транспорта против градиентов концентрации переносятся ио­ны Na + К + , аминокислота глицин, выполняющая функцию тормозного медиатора.

Приведенные материалы характеризуют способы проник­новения биологически важных веществ через биологические барьеры. Они необходимы для понимания гуморальных регу­ляций в организме.

Контрольные вопросы и задания

    Каковы основные условия сохранения жизнедеятельности ор­ганизма?

    Каково взаимодействие организма с внешней средой? Дайте определение понятия адаптации к среде существования.

    Какова внутренняя среда организма и ее составляющие?

    Что такое гомеостаз и гомеостатические константы?

    Назовите границы колебаний жестких и пластичных гомео- статических констант. Дайте определение понятия об их циркад- ных ритмах.

    Перечислите важнейшие понятия теории гомеостатических регуляций.

7 Дайте определение раздражения и раздражителей. Как класси­фицируются раздражители?

      В чем различие понятия "рецептор" с молекулярно-биологи­ческой и морфофункциональной точки зрения?

      Дайте определение понятия лигандов.

      Что такое физиологические регуляции и замкнутый контур регулирования? Каковы его составляющие?

      Назовите виды и роль обратных связей.

      Дайте определение понятия об установочной точке гомео­статических регуляций.

      Какие существуют уровни регулирующих систем?

      В чем заключаются единство и отличительные особенности нервных и гуморальных регуляций в организме?

      Какие существуют виды гуморальных регуляций? Дайте их ха­рактеристику.

      Каково строение и свойства клеточных мембран?

17 Каковы функции клеточных мембран?

        В чем заключаются диффузия и транспорт веществ через кле­точные мембраны?

        Дайте характеристику и приведите примеры активного мем­бранного транспорта.

        Дайте определение понятия гистогематических барьеров.

        Что такое гематоэнцефалический барьер и какова его роль? t;

При физиологической регуляции организма функции осуществляются на оптимальном уровне для нормальной работоспособности, поддержки гомеостатических условий с процессами метаболизма. Её цель заключается в том, чтобы организм всегда был приспособлен к изменяющимся внешнесредовым условиям.

У организма человека регуляционная деятельность представлена следующими механизмами:

  • нервная регуляция;

Работа нервной и гуморальной регуляции совместная, между собой они тесно связаны. Химические соединения, осуществляющие регуляцию организма, осуществляют воздействие на нейроны с полным изменением их состояния. Гормональные соединения, секретирующиеся в соответствующих железах, также влияют на НС. А функции желез, продуцирующих гормоны, управляются НС, значение которой при поддержке регуляторной функции для организма огромно. Гуморальный фактор является частью нервно-гуморальной регуляции.

Примеры регуляций

Наглядность регуляции покажет пример того, как изменяется осмотическое давление крови при состоянии, когда человек хочет пить. Данный тип давления увеличивается из-за дефицита влаги внутри организма. Это приводит к раздражённости осмотических рецепторов. Появившаяся возбуждённость через нервные пути передаётся в ЦНС. Из неё множество импульсов попадают к гипофизарной железе, происходит стимуляция с выделением в кровоток антидиуретического гипофизарного гормона. В кровотоке гормон проникает к изогнутым почечным каналам, происходит усиление обратного всасывания влаги из клубочкового ультрафильтрата (первичной мочи) в кровоток. Результат этого ─ наблюдается снижение выделяемой с водой мочи, происходит восстановление отклонившегося от нормальных показателей осмотического давления организма.

При избыточном глюкозном уровне кровотока нервной системой осуществляется стимуляция функций интросекреторной области эндокринного органа, вырабатывающего инсулиновывй гормон. Уже в кровотоке поступление инсулинового гормона увеличилось, ненужная глюкоза вследствие его влияния переходит к печени, мышцам в гликогеновом виде. Усиленная физическая работа способствует увеличению потребления глюкозы, в кровотоке её объём уменьшается, осуществляется усиление функций надпочечников. Адреналиновым гормоном осуществляется переход гликогена в глюкозу. Таким образом, нервная регуляция, воздействующая на внутрисекреторные железы, осуществляет стимуляцию либо торможение функций важных активных биологических соединений.

Гуморальная регуляция жизненных функций организма в отличие от нервной регуляции при переносе информации применяет разную жидкостную среду организма. Передача сигналов осуществляется с помощью химических соединений:

  • гормональных;
  • медиаторных;
  • электролитных и многих других.

Гуморальная регуляция, также, как и нервная регуляция содержит некоторые отличия.

  • отсутствует конкретный адресат. Течение биовеществ доставляется к разным клеткам организма;
  • информация доставляется с небольшой скоростью, которая сопоставима скорости течения биоактивных сред: от 0.5-0.6 до 4.5-5 м/с;
  • действие длинное.

Нервная регуляция жизненных функций в теле человека осуществляется с помощью ЦНС и ПНС. Передача сигналов осуществляется с помощью многочисленных импульсов.

Данная регуляция характерна своими отличиями.

  • существует конкретный адрес доставки сигнала к конкретному органу, ткани;
  • доставка информации осуществляется с большой скоростью. Скорость импульса ─ до 115-119 м/с;
  • действие кратковременное.

Гуморальное регулирование

Гуморальный механизм ─ это древняя форма взаимодействия, которая со временем совершенствовалась. У человека существуют несколько разных вариантов реализации данного механизма. Неспецифическим вариантом регуляции является местным.

Местная клеточная регуляция осуществляется тремя методами, их основание составляет перенос сигналов соединениями в границе единственного органа либо ткани при помощи:

  • креаторной клеточной связи;
  • простых видов метаболита;
  • активных биологических соединений.

Благодаря креаторной связи происходит межклеточный информационный обмен, необходимый для направленной настройки внутриклеточного синтезировния белковых молекул с другими процессами для преобразования клеток в ткани, дифференцирования, развитием с ростом, а в итоге выполнения функций клеток, содержащихся в ткани, как целостной многоклеточной системы.

Метаболит является продуктом процессов метаболизма, может действовать аутокринно, то есть изменять клеточную работоспособность, посредством которой он выделяется, или паракринно, то есть изменять клеточную работу, где клетка располагается в границе той же ткани, достигая её через внутриклеточную жидкость. К примеру, при накоплении молочной кислоты во время физической работы сосуды, приносящие к мышцам кровь, расширяются, кислородное насыщение мышцы увеличивается, однако, сила мышечной сокращаемости снижается. Так проявляется гуморальная регуляция.

Гормоны, расположенные в тканях, также являются биологическими активными соединениями - продуктами метаболизма клеток, но имеют более сложное химическое строение. Они представлены:

  • биогенными аминами;
  • кининами;
  • ангиотензинами;
  • простогландинами;
  • эндотелиями и другими соединениями.

Данные соединения изменяют следующие биофизические клеточные свойства:

  • мембранная проницаемость;
  • настройку энергетических обменных процессов;
  • мембранный потенциал;
  • ферментные реакции.

Ещё они способствуют образованию второстепенных посредников и изменяют тканевое кровоснабжение.

БАВ (биологически активные вещества) исполняют регуляцию клеток с помощью специальных клеточно-мембранных рецепторов. БАВ также модулируют регуляторные влияния, поскольку меняют клеточную чувствительность к нервным и гормональным воздействиям путём изменённого числа клеточных рецепторов и их сходства к различным молекулам, несущих информацию.

БАВ, образовываясь в разных тканях, воздействуют аутокринно и паракринно, но способны проникать в кровь и действовать системно. Одни из них (кинины) образуются из предшественников в крови плазмы, поэтому эти вещества, при местном действии, даже вызывают распространённый результат, подобный гормональному.

Физиологическая настройка функций организма осуществляется путём слаженного взаимодействия НС и гуморальной системы. Нервная регуляция и гуморальная осуществляют объединение функций организма для его полноценной функциональности, а человеческий организм работает как одно целое.

Взаимодействие организма человека с внешнесредовыми условиями осуществляется с помощью активной НС, работоспособность которой определяется рефлексами.



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения