Подпишись и читай
самые интересные
статьи первым!

Гуморальная регуляция дыхания опыт фредерика. Опыт Фредерика и Холдена (влияние углекислого газа на дыхательный центр)

Основная функция дыхательной системы заключается в обеспечении газообмена кислорода и углекислого газа между окружающей средой и организмом в соответствии с его метаболическими потребностями. В целом эту функцию регулирует сеть многочисленных нейронов ЦНС, которые связаны с дыхательным центром продолговатого мозга.

Под дыхательным центром понимают совокупность нейронов, расположенных в разных отделах ЦНС, обеспечивающих координированную деятельность мышц и приспособление дыхания к условиям внешней и внутренней среды. В 1825 г. П. Флуранс выделил в ЦНС «жизненный узел», Н.А. Миславский (1885) открыл инспираторную и экспираторную части, а позже Ф.В. Овсянниковым был описан дыхательный центр.

Дыхательный центр представляет собой парное образование, состоящее из центра вдоха (инспираторного) и центра выдоха (экспираторного). Каждый центр регулирует дыхание одноименной стороны: при разрушении дыхательного центра с одной стороны наступает прекращение дыхательных движений с этой стороны.

Экспираторный отдел - часть дыхательного центра, регулирующая процесс выдоха (его нейроны располагаются в вентральном ядре продолговатого мозга).

Инспираторный отдел — часть дыхательного центра, регулирующая процесс вдоха (локализуется преимущественно в дорсальном отделе продолговатого мозга).

Нейроны верхнего отдела моста, регулирующие акт дыхания, были названы пневмотаксическим центром. На рис. 1 показано расположение нейронов дыхательного центра в различных отделах ЦНС. Центр вдоха обладает автоматизмом и находится в тонусе. Центр выдоха регулируется из центра вдоха через пневмотаксический центр.

Ппевмотаксический комплекс — часть дыхательного центра, расположенная в области варолиева моста и регулирующая вдох и выдох (во время вдоха вызывает возбуждение центра выдоха).

Рис. 1. Локализация дыхательных центров в нижней части ствола мозга (вид сзади):

ПН — пневмотаксический центр; ИНСП — инспираторный; ЗКСП — экспираторный. Центры являются двусторонними, но для упрощения схемы на каждой из сторон изображен только один. Перерезка по линии 1 не отражается на дыхании, по линии 2 отделяется пневмотаксический центр, ниже линии 3 наступает остановка дыхания

В структурах моста тоже различают два дыхательных центра. Один из них — пневмотаксический — способствует смене вдоха на выдох (за счет переключения возбуждения из центра вдоха на центр выдоха); второй центр осуществляет тоническое влияние на дыхательный центр продолговатого мозга.

Экспираторный и инспираторный центры находятся в реципрокных отношениях. Под влиянием спонтанной активности нейронов инспираторного центра возникает акт вдоха, во время которого при растяжении легких возбуждаются механорецепторы. Импульсы от механорецепторов по афферентным нейронам возбуждающего нерва поступают вдыхательный центр и вызывают возбуждение экспираторного и торможение инспираторного центра. Это обеспечивает смену вдоха на выдох.

В смене вдоха на выдох существенное значение имеет пневмотаксический центр, который свое влияние осуществляет через нейроны экспираторного центра (рис. 2).

Рис. 2. Схема нервных связей дыхательного центра:

1 — инспираторный центр; 2 — пневмотаксический центр; 3 — экспираторный центр; 4 — механорецепторы легкого

В момент возбуждения инспираторного центра продолговатого мозга одновременно возникает возбуждение в инспираторном отделе пневмотаксического центра. От последнего по отросткам его нейронов импульсы приходят к экспираторному центру продолговатого мозга, вызывая его возбуждение и по индукции — торможение инспираторного центра, что приводит к смене вдоха на выдох.

Таким образом, регуляция дыхания (рис. 3) осуществляется благодаря согласованной деятельности всех отделов ЦНС, объединенных понятием дыхательного центра. На степень активности и взаимодействие отделов дыхательного центра влияют различные гуморальные и рефлекторные факторы.

Автомашин дыхательного центра

Способность дыхательного центра к автоматии впервые обнаружена И.М. Сеченовым (1882) в опытах на лягушках в условиях полной деафферентации животных. В этих экспериментах, несмотря на то что афферентные импульсы не поступали в ЦНС, регистрировались колебания потенциалов в дыхательном центре продолговатого мозга.

Об автоматии дыхательного центра свидетельствует опыт Гейманса с изолированной головой собаки. Ее мозг был перерезан на уровне моста и лишен различных афферентных влияний (были перерезаны языкоглоточный, язычный и тройничный нервы). В этих условиях к дыхательному центру не поступали импульсы не только от легких и дыхательных мышц (вследствие предварительного отделения головы), но и от верхних дыхательных путей (вследствие перерезки названных нервов). Тем не менее у животного сохранились ритмические движения гортани. Этот факт можно объяснить только наличием ритмической активности нейронов дыхательного центра.

Автоматия дыхательного центра поддерживается и изменяется под влиянием импульсов от дыхательных мышц, сосудистых рефлексогенных зон, различных интеро- и экстерорецепторов, а также под влиянием многих гуморальных факторов (рН крови, содержание углекислого газа и кислорода в крови и др).

Влияние углекислого газа на состояние дыхательного центра

Влияние углекислого газа на активность дыхательного центра особенно ярко демонстрируется в опыте Фредерика с перекрестным кровообращением. У двух собак перерезают сонные артерии и яремные вены и соединяют перекрестно: периферический конец сонной артерии соединяют с центральным концом этого же сосуда второй собаки. Так же перекрестно соединяют и яремные вены: центральный конец яремной вены первой собаки соединяется с периферическим концом яремной вены второй собаки. В результате кровь от туловища первой собаки поступает к голове второй собаки, а кровь от туловища второй собаки — к голове первой собаки. Все другие сосуды перевязывают.

После такой операции у первой собаки производили зажатие трахеи (удушение). Это приводило к тому, что через некоторое время наблюдались увеличение глубины и частоты дыхания у второй собаки (гиперпноэ), тогда как у первой собаки наступала остановка дыхания (апноэ). Объясняется это тем, что у первой собаки в результате зажатия трахеи не осуществлялся обмен газов, а в крови увеличивалось содержание углекислого газа (наступала гиперкапния) и уменьшалось содержание кислорода. Эта кровь поступала к голове второй собаки и оказывала влияние на клетки дыхательного центра, следствием чего явилось гиперпноэ. Но в процессе усиленной вентиляции легких в крови второй собаки уменьшалось содержание углекислого газа (гипокапния) и увеличивалось содержание кислорода. Кровь с уменьшенным содержанием углекислого газа поступала к клеткам дыхательного центра первой собаки, и раздражение последнего уменьшалось, что приводило к апноэ.

Таким образом, увеличение содержания углекислого газа в крови приводит к увеличению глубины и частоты дыхания, а уменьшение содержания углекислого газа и увеличение кислорода — к его уменьшению вплоть до остановки дыхания. В тех наблюдениях, когда первой собаке давали дышать различными газовыми смесями, наибольшее изменение дыхания наблюдалось при увеличении содержания углекислого газа в крови.

Зависимость деятельности дыхательного центра от газового состава крови

Деятельность дыхательного центра, определяющая частоту и глубину дыхания, зависит прежде всего от напряжения газов, растворенных в крови, и концентрации в ней водородных ионов. Ведущее значение в определении величины вентиляции легких имеет напряжение углекислого газа в артериальной крови: оно как бы создает запрос на нужную величину вентиляции альвеол.

Для обозначения повышенного, нормального и сниженного напряжения углекислого газа в крови используют термины «гиперкапния», «нормокапния» и «гипокапния» соответственно. Нормальное содержание кислорода называется нормоксией , недостаток кислорода в организме и тканях - гипоксией, в крови - гипоксемиеи. Увеличение напряжения кислорода есть гиперксия. Состояние, при котором гиперкапния и гипоксия существуют одновременно, называется асфиксией.

Нормальное дыхание в состоянии покоя называется эипноэ. Гиперкапния, а также снижение величины рН крови (ацидоз) сопровождаются непроизвольным увеличением вентиляции легких - гиперпноэ , направленным на выведение из организма избытка углекислого газа. Вентиляция легких возрастает преимущественно за счет глубины дыхания (увеличения дыхательного объема), но при этом возрастает и частота дыхания.

Гипокапния и повышение уровня рН крови ведут к уменьшению вентиляции, а затем и к остановке дыхания - апноэ.

Развитие гипоксии вначале вызывает умеренное гиперпноэ (в основном в результате возрастания частоты дыхания), которое при увеличении степени гипоксии сменяется ослаблением дыхания и его остановкой. Апноэ вследствие гипоксии смертельно опасно. Его причиной является ослабление окислительных процессов в мозге, в том числе в нейронах дыхательного центра. Гипоксическому апноэ предшествует потеря сознания.

Гиперкаинию можно вызвать вдыханием газовых смесей с повышенным до 6% содержанием углекислого газа. Деятельность дыхательного центра человека находится под произвольным контролем. Произвольная задержка дыхания на 30-60 с вызывает асфиксичсские изменения газового состава крови, после прекращения задержки наблюдается гиперпноэ. Гипокапнию легко вызывать произвольным усилением дыхания, а также избыточной искусственной вентиляцией легких (гипервентиляция). У бодрствующего человека даже после значительной гипервентиляции остановки дыхания обычно не возникает вследствие контроля дыхания передними отделами мозга. Гипокапния компенсируется постепенно, в течение нескольких минут.

Гипоксия наблюдается при подъеме на высоту вследствие снижения атмосферного давления, при крайне тяжелой физической работе, а также при нарушении дыхания, кровообращения и состава крови.

Во время сильной асфиксии дыхание становится максимально глубоким, в нем принимают участие вспомогательные дыхательные мышцы, возникает неприятное ощущение удушья. Такое дыхание называют диспноэ.

В целом поддержание нормального газового состава крови основано на принципе отрицательной обратной связи. Так, гииеркапния вызывает усиление активности дыхательного центра и увеличение вентиляции легких, а гипокапния — ослабление деятельности дыхательного центра и уменьшение вентиляции.

Рефлекторные влияния на дыхание с сосудистых рефлексогенных зон

Дыхание особенно быстро реагирует на различные раздражения. Оно быстро изменяется под влиянием импульсов, приходящих с экс- теро- и интерорецепторов к клеткам дыхательного центра.

Раздражителем рецепторов могут быть химические, механические, температурные и другие воздействия. Наиболее ярко выраженным механизмом саморегуляции является изменение дыхания под влиянием химического и механического раздражения сосудистых рефлексогенных зон, механического раздражения рецепторов легких и дыхательных мышц.

Синокаротидная сосудистая рефлексогенная зона содержит рецепторы, чувствительные к содержанию углекислого газа, кислорода и водородных ионов в крови. Это отчетливо показано в опытах Гейманса с изолированным каротидным синусом, который отделяли от сонной артерии и снабжали кровью от другого животного. С ЦНС каротидный синус был соединен только нервным путем — сохранился нерв Геринга. При повышении содержания углекислого газа в крови, омывающей каротидное тельце, возникает возбуждение хеморецепторовэтой зоны, вследствие чего увеличивается количество импульсов, идущих к дыхательному центру (к центру вдоха), и наступает рефлекторное увеличение глубины дыхания.

Рис. 3. Регуляция дыхания

К — кора; Гт — гипоталамус; Пвц — пневмотаксический центр; Апц — центр дыхания (экспираторный и инспираторный); Ксин — каротидный синус; Бн — блуждающий нерв; См — спинной мозг; С 3 -С 5 — шейные сегменты спинного мозга; Дфн — диафрагмальный нерв; ЭМ — экспираторные мышцы; ИМ — инспираторные мышцы; Мнр — межреберные нервы; Л — легкие; Дф — диафрагма; Th 1 — Th 6 — грудные сегменты спинного мозга

Увеличение глубины дыхания наступает и при воздействии углекислого газа на хеморецепторы аортальной рефлексогенной зоны.

Такие же изменения дыхания наступают при раздражении хемо- рецепторов названных рефлексогенных зон кровыо с повышенной концентрацией водородных ионов.

В тех же случаях, когда в крови увеличивается содержание кислорода, раздражение хеморецепторов рефлексогенных зон уменьшается, вследствие чего ослабевает поток импульсов к дыхательному центру и наступает рефлекторное уменьшение частоты дыхания.

Рефлекторным возбудителем дыхательного центра и фактором, влияющим на дыхание, является изменение АД в сосудистых рефлексогенных зонах. При повышении АД раздражаются механорецепторы сосудистых рефлексогенных зон, вследствие чего наступает рефлекторное угнетение дыхания. Уменьшение величины АД приводит к увеличению глубины и частоты дыхания.

Рефлекторные влияния на дыхание с механорецепторов легких и дыхательных мышц. Существенным фактором, вызывающим смену вдоха и выдоха, являются влияния с механорецепторов легких, что впервые было обнаружено Герингом и Брейером (1868). Они показали, что каждый вдох стимулирует выдох. Во время вдоха при растяжении легких раздражаются механорецепторы, расположенные в альвеолах и дыхательных мышцах. Возникшие в них импульсы по афферентным волокнам блуждающего и межреберных нервов приходят к дыхательному центру и вызывают возбуждение экспираторных и торможение инспираторных нейронов, вызывая смену вдоха на выдох. Это один из механизмов саморегуляции дыхания.

Подобно рефлексу Геринга-Брейера, осуществляются рефлекторные влияния на дыхательный центр от рецепторов диафрагмы. Во время вдоха в диафрагме при сокращении ее мышечных волокон раздражаются окончания нервных волокон, возникающие в них импульсы поступают в дыхательный центр и вызывают прекращение вдоха и возникновение выдоха. Этот механизм имеет особенно большое значение при усиленном дыхании.

Рефлекторные влияния на дыхание с различных рецепторов организма. Рассмотренные рефлекторные влияния на дыхание относятся к постоянно действующим. Но существуют различные кратковременные воздействия почти со всех рецепторов нашего организма, которые влияют на дыхание.

Так, при действии механических и температурных раздражителей на экстерорецепторы кожи наступает задержка дыхания. При действии холодной или горячей воды на большую поверхность кожи возникает остановка дыхания на вдохе. Болевое раздражение кожи вызывает резкий вдох (вскрикивание) с одновременным закрытием голосовой шели.

Некоторые изменения акта дыхания, возникающие при раздражении слизистых оболочек дыхательных путей, получили название защитных дыхательных рефлексов: кашель, чихание, задержка дыхания, наступающая при действии резких запахов, и др.

Дыхательный центр и его связи

Дыхательным центром называют совокупность нейронных структур, расположенных в различных отделах центральной нервной системы, регулирующих ритмические координированные сокращения дыхательных мышц и приспосабливающих дыхание к изменяющимся условиям среды и потребностям организма. Среди этих структур выделяют жизненно важные отделы дыхательного центра, без функционирования которых дыхание прекращается. К ним относятся отделы, расположенные в продолговатом и спинном мозге. В спинном мозге к структурам дыхательного центра относят мотонейроны, формирующие их аксонами диафрагмальные нервы (в 3-5-м шейных сегментах), и мотонейроны, формирующие межреберные нервы (во 2-10-м грудных сегментах, при этом испираторные нейроны сосредоточены во 2-6-м, а экспираторные — в 8-10-м сегментах).

Особую роль в регуляции дыхания играет дыхательный центр, представленный отделами, локализованными в стволе мозга. Часть нейронных групп дыхательного центра расположена в правой и левой половинах продолговатого мозга в области дна IV желудочка. Выделяют дорзальную группу нейронов, активирующих мышцы вдоха, — инспираторный отдел и вентральную группу нейронов, контролирующих преимущественно выдох, — экспираторный отдел.

В каждом из этих отделов имеются различные по свойствам нейроны. Среди нейронов инспираторного отдела выделяют: 1) ранние инспираторные — их активность повышается за 0,1-0,2 с до начала сокращения инспираторных мышц и длится в течение вдоха; 2) полные инспираторные — активны во время вдоха; 3) поздние инспираторные — активность повышается в середине вдоха и заканчивается в начале выдоха; 4) нейроны промежуточного типа. Часть нейронов инспираторного отдела обладает способностью самопроизвольно ритмически возбуждаться. Описаны аналогичные по свойствам нейроны в экспираторном отделе дыхательного центра. Взаимодействие между этими нейронными пулами обеспечивает формирование частоты и глубины дыхания.

Важная роль в определении характера ритмической активности нейронов дыхательного центра и дыхания принадлежит сигналам, приходящим к центру по афферентным волокнам от рецепторов, а также от коры большого мозга, лимбической системы и гипоталамуса. Упрощенная схема нервных связей дыхательного центра представлена на рис. 4.

Нейроны инспираторного отдела получают информацию о напряжении газов в артериальной крови, рН крови от хеморецепторов сосудов и о рН ликвора от центральных хеморецепторов, расположенных на вентральной поверхности продолговатого мозга.

К дыхательному центру поступают также нервные импульсы от рецепторов, контролирующих растяжение легких и состояние дыхательных и других мышц, от терморецепторов, болевых и сенсорных рецепторов.

Сигналы, поступающие к нейронам дорзальной части дыхательного центра, модулируют их собственную ритмическуюактивность и оказывают влияние на формирование ими потоков эфферентных нервных импульсов, передающихся в спинной мозг и далее к диафрагме и наружным межреберным мышцам.

Рис. 4. Дыхательный центр и его связи: ИЦ — инспираторный центр; ПЦ — инсвмотакснчсскнй центр; ЭЦ — экспираторный центр; 1,2- импульсы от рецепторов растяжения дыхательных путей, легких и грудной клетки

Таким образом, дыхательный цикл запускается инспираторными нейронами, которые активируются благодаря автома- тии, а его продолжительность, частота и глубина дыхания зависят от влияния на нейронные структуры дыхательного центра сигналов рецепторов, чувствительных к уровню р0 2 , рС0 2 и рН, а также от других интеро- и экстерорецепторов.

Эфферентные нервные импульсы от инспираторных нейронов передаются по нисходящим волокнам в составе вентрального и передней части бокового канатика белого вещества спинного мозга к а-мотонейронам, формирующим диафрагмальные и межреберные нервы. Все волокна, следующие к мотонейронам, иннервирующим мышцы выдоха, являются перекрещенными, а из волокон, следующих к моторным нейронам, иннервирующим инспираторные мышцы, перекрещены 90%.

Моторные нейроны, активированные потоком нервных импульсов инспираторных нейронов дыхательного центра, посылают эфферентные импульсы к нервно-мышечным синапсам мышц вдоха, обеспечивающих увеличение объема грудной клетки. Вслед за грудной клеткой увеличивается объем легких и происходит вдох.

Во время вдоха активируются рецепторы растяжения дыхательных путей и легких. Поток нервных импульсов от этих рецепторов по афферентным волокнам блуждающего нерва поступает в продолговатый мозг и активирует экспираторные нейроны, запускающие выдох. Так замыкается один контур механизма регуляции дыхания.

Второй регуляторный контур также начинается от инспираторных нейронов и проводит импульсы к нейронам пневмотаксического отдела дыхательного центра, расположенного в мосту ствола мозга. Этот отдел координирует взаимодействие между инспираторными и экспираторными нейронами продолговатого мозга. Пневмотаксический отдел перерабатывает пришедшую от инспираторного центра информацию и посылает поток импульсов, возбуждающих нейроны экспираторного центра. Потоки импульсов, приходящих от нейронов пневмотаксического отдела и от рецепторов растяжения легких, конвергируют на экспираторных нейронах, возбуждают их, экспираторные нейроны тормозят (но принципу реципрокного торможения) активность инспираторных нейронов. Посылка нервных импульсов к мышцам вдоха прекращается и они расслабляются. Этого достаточно, чтобы произошел спокойный выдох. При усиленном выдохе от экспираторных нейронов посылаются эфферентные импульсы, вызывающие сокращение внутренних межреберных мышц и мышц брюшного пресса.

Описанная схема нервных связей отражает лишь наиболее общий принцип регуляции дыхательного цикла. В действительности же афферентные потоки сигналов от многочисленных рецепторов дыхательных путей, сосудов, мышц, кожи и т.д. поступают ко всем структурам дыхательного центра. На одни группы нейронов они оказывают возбуждающее действие, на другие — тормозное. Переработка и анализ этой информации в дыхательном центре ствола мозга находится под контролем и корригируется высшими отделами головного мозга. Например, гипоталамус играет ведущую роль в изменениях дыхания, связанных с реакциями на болевые раздражения, физическую нагрузку, а также обеспечивает вовлечение дыхательной системы в терморегуляторные реакции. Лимбические структуры оказывают влияние на дыхание при эмоциональных реакциях.

Кора большого мозга обеспечивает включение дыхательной системы в поведенческие реакции, речевую функцию, пенис. О наличии влияния коры большого мозга на отделы дыхательного центра в продолговатом и спинном мозге свидетельствует возможность произвольного изменения частоты, глубины и задержки дыхания человеком. Влияние коры мозга на бульбарный дыхательный центр достигается как через кортико-бульбарные пути, так и через подкорковые структуры (стрпопаллидариые, лимбические, ретикулярную формацию).

Рецепторы кислорода, углекислого газа и рН

Рецепторы кислорода активны уже при нормальном уровне рО 2 и непрерывно посылают потоки сигналов (тоническая импульсация), активирующих инспираторные нейроны.

Рецепторы кислорода сосредоточены в каротидных тельцах (область бифуркации общей сонной артерии). Они представлены гломусными клетками 1-го типа, которые окружены поддерживающими клетками и имеют синаптоподобные связи с окончаниями афферентных волокон языкоглоточного нерва.

Гломусные клетки 1-го типа реагируют на снижение рО 2 в артериальной крови усилением выделения медиатора допамина. Допамин вызывает генерацию нервных импульсов в окончаниях афферентных волокон язы ко глоточного нерва, которые проводятся к нейронам инспираторного отдела дыхательного центра и к нейронам прессорного отдела сосудодвигательного центра. Таким образом, снижение напряжения кислорода в артериальной крови приводит к увеличению частоты посылки афферентных нервных импульсов и повышению активности инспираторных нейронов. Последние увеличивают вентиляцию легких, главным образом за счет учащения дыхания.

Рецепторы, чувствительные к углекислому газу, имеются в каротидных тельцах, аортальных тельцах дуги аорты, а также непосредственно в продолговатом мозге — центральные хеморецепторы. Последние расположены на вентральной поверхности продолговатого мозга в области между выходом подъязычного и блуждающего нервов. Рецепторы углекислого газа воспринимают также изменения концентрации ионов Н + . Рецепторы артериальных сосудов реагируют на изменения рС0 2 и рН плазмы крови, при этом поступление к инспиратор- ным нейронам афферентных сигналов от них возрастает при увеличении рСО 2 , и (или) снижении рН плазмы артериальной крови. В ответ на поступление от них большего числа сигналов в дыхательный центр рефлекторно увеличивается вентиляция легких за счет углубления дыхания.

Центральные хеморецепторы реагируют на изменения рН и рСО 2 , ликвора и межклеточной жидкости продолговатого мозга. Считают, что центральные хеморецепторы преимущественно реагируют на изменение концентрации протонов водорода (рН) в интерстициальной жидкости. При этом изменение рН достигается вследствие легкого проникновения углекислого газа из крови и ликвора через структуры гематоэнцефалического барьера в мозг, где в результате его взаимодействия с Н 2 0 образуется углекислота, диссоциирующая с высвобождением прогонов водорода.

Сигналы от центральных хеморецепторов также проводятся к инспираторным нейронам дыхательного центра. Некоторой чувствительностью к сдвигу рН интерстициальной жидкости обладают сами нейроны дыхательного центра. Снижение рН и накопление углекислого газа в ликворе сопровождается активацией инспираторных нейронов и увеличением вентиляции легких.

Таким образом, регуляция рС0 0 и рН тесно связаны как на уровне эффекторных систем, влияющих на содержание водородных ионов и карбонатов в организме, так и на уровне центральных нервных механизмов.

При быстром развитии гиперкапнии увеличение вентиляции легких лишь приблизительно на 25% вызвано стимуляцией периферических хеморсцегггоров углекислого газа и рН. Остальные 75% связаны с активацией протонами водорода и углекислым газом центральных хеморецепторов продолговатого мозга. Это обусловлено высокой проницаемостью гематоэнцефалического барьера для углекислого газа. Поскольку ликвор и межклеточная жидкость мозга имеют гораздо меньшую емкость буферных систем, чем кровь, то аналогичное с кровью по величине возрастание рС0 2 создает в ликворе более кислую среду, чем в крови:

При длительной гиперкапнии рН ликвора возвращается к норме из-за постепенного увеличения проницаемости гематоэнцефалического барьера для анионов НС0 3 и накопления их в ликворе. Это приводит к снижению вентиляции, развившейся в ответ на гиперкапнию.

Чрезмерное увеличение активности рецепторов рСО 0 и рН способствуют возникновению субъективно тягостных, мучительных ощущений удушья, нехватки воздуха. В этом легко убедиться, если сделать длительную задержку дыхания. В то же время при недостатке кислорода и снижении р0 2 в артериальной крови, когда рСО 2 и рН крови поддерживаются нормальными, человек не испытывает неприятных ощущений. Следствием этого могут быть ряд опасностей, возникающих в быту или в условиях дыхания человека газовыми смесями из замкнутых систем. Наиболее часто они имеют место при отравлении угарным газом (смерть в гараже, другие бытовые отравления), когда человек из-за отсутствия явных ощущений удушья не предпринимает защитных действий.

По современным представлениям дыхательный центр – это совокупность нейронов, обеспечивающих смену процессов вдоха и выдоха и адаптацию системы к потребностям организма. Выделяют несколько уровней регуляции:

1) спинальный;

2) бульбарный;

3) супрапонтиальный;

4) корковый.

Спинальный уровень представлен мотонейронами передних рогов спинного мозга, аксоны которых иннервируют дыхательные мышцы. Этот компонент не имеет самостоятельного значения, так как подчиняется импульсам из вышележащих отделов.

Нейроны ретикулярной формации продолговатого мозга и моста образуют бульбарный уровень . В продолговатом мозге выделяют следующие виды нервных клеток:

1) ранние инспираторные (возбуждаются за 0,1–0,2 с до начала активного вдоха);

2) полные инспираторные (активируются постепенно и посылают импульсы всю фазу вдоха);

3) поздние инспираторные (начинают передавать возбуждение по мере угасания действия ранних);

4) постинспираторные (возбуждаются после торможения инспираторных);

5) экспираторные (обеспечивают начало активного выдоха);

6) преинпираторные (начинают генерировать нервный импульс перед вдохом).

Аксоны этих нервных клеток могут направляться к мотонейронам спинного мозга (бульбарные волокна) или входить в состав дорсальных и вентральных ядер (протобульбарные волокна).

Нейроны продолговатого мозга, входящие в состав дыхательного центра, обладают двумя особенностями:

1) имеют реципрокные отношения;

2) могут самопроизвольно генерировать нервные импульсы.

Пневмотоксический центр образован нервными клетками моста. Они способны регулировать активность нижележащих нейронов и приводят к смене процессов вдоха и выдоха. При нарушении целостности ЦНС в области ствола мозга понижается частота дыхания и увеличивается продолжительность фазы вдоха.

Супрапонтиальный уровень представлен структурами мозжечка и среднего мозга, которые обеспечивают регуляцию двигательной активности и вегетативной функции.

Корковый компонент состоит из нейронов коры больших полушарий, влияющих на частоту и глубину дыхания. В основном они оказывают положительное влияние, особенно на моторные и орбитальные зоны. Кроме того, участие коры больших полушарий говорит о возможности самопроизвольно изменять частоту и глубину дыхания.

Таким образом, в регуляции дыхательного процесса принимают различные структуры коры больших полушарий, но ведущую роль играет бульбарный отдел.

2. Гуморальная регуляция нейронов дыхательного центра

Впервые гуморальные механизмы регуляции были описаны в опыте Г. Фредерика в 1860 г., а затем изучались отдельными учеными, в том числе И. П. Павловым и И. М. Сеченовым.

Г. Фредерик провел опыт перекрестного кровообращения, в котором соединил сонные артерии и яремные вены двух собак. В результате голова собаки № 1 получала кровь от туловища животного № 2, и наоборот. При пережатии трахеи у собаки № 1 произошло накопление углекислого газа, который поступил в туловище животного № 2 и вызвал у него повышение частоты и глубины дыхания – гиперпноэ. Такая кровь поступила в голову собаки под № 1 и вызвала понижение активности дыхательного центра вплоть до остановки дыхания гипопноэ и апопноэ. Опыт доказывает, что газовый состав крови напрямую влияет на интенсивность дыхания.

Возбуждающее действие на нейроны дыхательного центра оказывают:

1) понижение концентрации кислорода (гипоксемия);

2) повышение содержания углекислого газа (гиперкапния);

3) повышение уровня протонов водорода (ацидоз).

Тормозное влияние возникает в результате:

1) повышения концентрации кислорода (гипероксемии);

2) понижения содержания углекислого газа (гипокапнии);

3) уменьшения уровня протонов водорода (алкалоза).

В настоящее время учеными выделено пять путей влияния газового состава крови на активность дыхательного центра:

1) местное;

2) гуморальное;

3) через периферические хеморецепторы;

4) через центральные хеморецепторы;

5) через хемочувствительные нейроны коры больших полушарий.

Местное действие возникает в результате накопления в крови продуктов обмена веществ, в основном протонов водорода. Это приводит к активации работы нейронов.

Гуморальное влияние появляется при увеличении работы скелетных мышц и внутренних органов. В результате выделяются углекислый газ и протоны водорода, которые стоком крови поступают к нейронам дыхательного центра и повышают их активность.

Периферические хеморецепторы – это нервные окончания с рефлексогенных зон сердечно-сосудистой системы (каротидные синусы, дуга аорты и т. д.). Они реагируют на недостаток кислорода. В ответ начинают посылаться импульсы в ЦНС, приводящие к увеличению активности нервных клеток (рефлекс Бейнбриджа).

В состав ретикулярной формации входят центральные хеморецепторы , которые обладают повышенной чувствительностью к накоплению углекислого газа и протонов водорода. Возбуждение распространяется на все зоны ретикулярной формации, в том числе и на нейроны дыхательного центра.

Нервные клетки коры больших полушарий также реагируют на изменение газового состава крови.

Таким образом, гуморальное звено играет важную роль в регуляции работы нейронов дыхательного центра.

3. Нервная регуляция активности нейронов дыхательного центра

Нервная регуляция осуществляется в основном рефлекторными путями. Выделяют две группы влияний – эпизодические и постоянные.

К постоянным относятся три вида:

1) от периферических хеморецепторов сердечно-сосудистой системы (рефлекс Гейманса);

2) от проприорецепторов дыхательных мышц;

3) от нервных окончаний растяжений легочной ткани.

В процессе дыхания мышцы сокращаются и расслабляются. Импульсы от проприорецепторов поступают в ЦНС одновременно к двигательным центрам и нейронам дыхательного центра. Происходит регуляция работы мышц. При возникновении каких-либо препятствий дыхания инспираторные мышцы начинают еще больше сокращаться. В результате устанавливается зависимость между работой скелетных мышц и потребностями организма в кислороде.

Рефлекторные влияния от рецепторов растяжения легких были впервые обнаружены в 1868 г. Э. Герингом и И. Брейером. Они обнаружили, что нервные окончания, расположенные в гладкомышечных клетках, обеспечивают три вида рефлексов:

1) инспираторно-тормозные;

2) экспираторно-облегчающие;

3) парадоксальный эффект Хеда.

При нормальном дыхании возникает инспираторно-тормозные эффекты. Во время вдоха легкие растягиваются, и импульсы от рецепторов по волокнам блуждающих нервов поступают в дыхательный центр. Здесь происходит торможение инспираторных нейронов, что приводит к прекращению активного вдоха и наступлению пассивного выдоха. Значение этого процесса заключается в обеспечении начала выдоха. При перегрузке блуждающих нервов смена вдоха и выдоха сохраняется.

Экспираторно-облегчающий рефлекс можно обнаружить только в ходе эксперимента. Если растягивать легочную ткань в момент выдоха, то наступление следующего вдоха задерживается.

Парадоксальный эффект Хеда можно осуществить в ходе опыта. При максимальном растяжении легких в момент вдоха наблюдается дополнительный вдох или вздох.

К эпизодическим рефлекторным влияниям относятся:

1) импульсы от ирритарных рецепторов легких;

2) влияния с юкстаальвеолярных рецепторов;

3) влияния со слизистой оболочки дыхательных путей;

4) влияния от рецепторов кожи.

Ирритарные рецепторы расположены в эндотелиальном и субэндотелиальном слое дыхательных путей. Они выполняют одновременно функции механорецепторов и хеморецепторов. Механорецепторы обладают высоким порогом раздражения и возбуждаются при значительным спадании легких. Подобные спадания наступают в норме 2–3 раза в час. При уменьшении объема легочной ткани рецепторы посылают импульсы к нейронам дыхательного центра, что приводит к дополнительному вдоху. Хеморецепторы реагируют на появление частиц пыли в слизи. При активации ирритарных рецепторов возникают чувство першения в горле и кашель.

Юкстаальвеолярные рецепторы находятся в интерстиции. Они реагируют на появление химических веществ – серотонина, гистамина, никотина, а также на изменение жидкости. Это приводит к особому виду одышки при отеке (при пневмонии).

При сильном раздражении слизистой оболочки дыхательных путей происходит остановка дыхания, а при умеренном появляются защитные рефлексы. Например, при раздражении рецепторов носовой полости возникает чиханье, при активации нервных окончаний нижних дыхательных путей – кашель.

На частоту дыхания оказывают влияние импульсы, поступающие от температурных рецепторов. Так, например, при погружении в холодную воду наступает задержка дыхания.

При активации ноцецепторов сначала наблюдается остановка дыхания, а затем происходит постепенное учащение.

Во время раздражения нервных окончаний, заложенных в тканях внутренних органов, происходит уменьшение дыхательных движений.

При повышении давления наблюдается резкое понижение частоты и глубины дыхания, что влечет уменьшение присасывающей способности грудной клетки и восстановление величины кровяного давления, и наоборот.

Таким образом, рефлекторные влияния, оказываемые на дыхательный центр, поддерживают на постоянном уровне частоту и глубину дыхания.

Опыт Клода Бернара (1851). После перерезки симпатического нерва на шее кролика через 1-2мин. наблюдалось значительное расширение сосудов ушной раковины, что проявлялось в покраснении кожи уха и повышении её температуры. При раздражении периферического конца этого перерезанного нерва кожа, покрасневшая после перерезки симпатических волокон, становилась бледной и холодной. Это происходит в результате сужения просвета сосудов уха.

Рис. 11. Сосуды уха кролика; на правой стороне, где сосуды резко расширены, перерезан симпатический ствол на шее
Опыт Бронджеста.Опыт помогает понять механизм возникновения мышечного тонуса. На спинальной лягушке находят поясничное сплетение, сделав разрез около 1см сбоку от таза, подводят под сплетение лигатуру. Закрепив лягушку за нижнюю челюсть на штативе, отмечают симметричное полусогнутое положение нижних конечностей: равенство углов, образуемых бедром и голенью, голенью и стопой на обеих конечностях и одинаковый уровень расположения пальцев по горизонтали. Затем туго перевязывают поясничное сплетение и через несколько минут сравнивают угол и длину обеих лапок. Отмечают, что оперированная лапка слегка вытянута в результате устранения мышечного тонуса. Рис.12. Опыт Бронджеста

Опыт Гаскелла. Гаскелл использовал факт влияния температуры на скорость течения физиологических процессов для экспериментального доказательства ведущей роли синусного узла в автоматии сердца. Если нагревать или охлаждать различные отделы сердца лягушки, то выявляется, что частота его сокращения изменяется только при нагревании или охлаждении синуса, тогда как изменение температуры других частей сердца (предсердий, желудочка) сказывается лишь на силе мышечных сокращений. Опыт доказывает, что импульсы к сокращению сердца возникают в синусном узле.



Опыт Леви. Есть немало примеров того, что созидательная работа мозга человека происходит и во время сна. Так, известно, что именно во сне Д.И.Менделееву «явилась» Периодическая система химических элементов. Решающий опыт, с помощью которого удалось доказать химический механизм передачи нервных сигналов, приснился австрийскому ученому Отто Леви. Позже он вспомнил: «В ночь накануне пасхального воскресенья я проснулся, включил свет и бегло набросал несколько слов на крошечном листке бумаги. Затем снова заснул. В шесть часов утра я вспомнил, что записал нечто очень важное, но не смог разобрать свой небрежный почерк. На следующую ночь, в три часа, сон посетил меня снова. Это была идея эксперимента, который позволил бы проверить, верна ли гипотеза химической передачи, которая не давала мне покоя в течение семнадцати лет. Я немедленно встал, помчался в лабораторию и провел простой эксперимент на сердце лягушки, согласно своему ночному сновидению».



Рис.15. Опыт О.Леви. А – остановка сердца при раздражении блуждающего нерва; Б – остановка другого сердца без раздражения блуждающего нерва; 1 – блуждающий нерв, 2 – раздражающие электроды, 3 – канюля

Влияния на миокард нервных импульсов, приходящих по вегетативным нервам, определяются характером медиатора. Медиатором парасимпатических нервов является – ацетилхолин, а симпатических – норадреналин. Впервые это было установлено австрийским фармакологом О.Леви (1921). Он соединил два изолированных сердца лягушки с двумя концами одной и той же канюли. Сильное раздражение блуждающего нерва одного из сердец вызывало остановку не только иннервируемого этим нервом сердца, но и другого, интактного, связанного с первым только общим раствором канюли. Следовательно, при раздражении первого сердца в раствор выделялось вещество, влияющее на второе сердце. Это вещество было названо «вагусштофф» и оказалось впоследствии ацетилхолином. При аналогичном раздражении симпатического нерва сердца было получено другое вещество – «симпатикусштофф», представляющее собой адреналин или но-радреналин, сходные по своему химическому строению.

В 1936 г. О.Леви и Г.Дейл получили Нобелевскую премию за открытие химической природы передачи нервной реакции.

Опыт Мариотта (обнаружение слепого пятна). Испытуемый на вытянутых руках держит рисунок Мариотта. Закрыв левый глаз, смотрит правым глазом на крестик, и медленно приближает рисунок к глазу. На расстоянии приблизительно 15-25см изображение белого кружка исчезает. Происходит это потому, что при фиксации глазом крестика лучи от него падают на желтое пятно. Лучи от кружка при определенном расстоянии рисунка от глаза упадут на слепое пятно, и белый кружок перестает быть видимым.


Рис.16. Рисунок Мариотта

Опыт Маттеуччи (опыт вторичного сокращения). Готовят два нервно-мышечных препарата. Нерв одного препарата оставляют с кусочком позвоночника, а у другого кусочек позвоночника удаляют. Нерв одного нервно-мышечного препарата (с кусочком позвоночника) с помощью стеклянного крючка помещают на электроды, которые соединены со стимулятором. На мышцы этого препарата в продольном направлении набрасывают нерв второго нервно-мышечного препарата. Нерв первого нервно-мышечного препарата подвергают ритмичному раздражению, потенциалы действия, возникающие в мышце при ее сокращении, вызывают возбуждение наложенного на неё нерва другого нервно-мышечного препарата и сокращение его мышцы.

Рис. 17. Опыт Маттеуччи

Опыт Станниуса заключается в последовательном наложении трех лигатур (перевязок), разобщающих между собой отделы сердцалягушки. Опыт проводят для изучения способности к автоматии различных участков проводящей системы сердца.

Рис.18. Схема опыта Станниуса: 1 – первая лигатура; 2 – первая и вторая лигатуры; 3 – первая, вторая и третья лигатуры. Темным цветом обозначены отделы сердца, сокращающиеся после наложения лигатур

Опыт Сеченова (сеченовское торможение). Торможение в центральной нервной системе было открыто И.М.Сеченовым в 1862 г. Он наблюдал возникновение торможения спинномозговых рефлексов при раздражении промежуточного мозга (зрительных бугров) лягушки кристалликом поваренной соли. Внешне это выражалось в значительном уменьшении рефлекторной реакции (увеличении времени рефлекса) или ее прекращении. Снятие кристаллика поваренной соли приводило к восстановлению исходного времени рефлекса.

Б

Рис.19. Схема опыта И.М.Сеченова с раздражением зрительных бугров лягушки. А – последовательные этапы обнажения головного мозга лягушки (1 – отогнут срезанный над черепной коробкой лоскут кожи; 2 – удалены крыша черепа и обнажен мозг). Б – головной мозг лягушки с линией разреза для опыта Сеченова (1 – обонятельные нервы; 2 – обонятельные доли; 3 – большие полушария; 4 – линия разреза, проходящая через промежуточный мозг; 5 – средний мозг; 6 – мозжечок; 7 – продолговатый мозг). В – место наложения кристаллов поваренной соли

Опыт Фредерика-Гейманса (опыт с перекрестным кровообращением). В опыте одни сонные артерии собак (I и II) перевязывают, а другие при помощи резиновых трубок соединяют крест-накрест друг с другом. В результате голова собаки I снабжается кровью, притекающей от собаки II, а голова собаки II снабжается кровью собаки I. Если зажать трахею собаки I, то в крови, протекающей через сосуды ее тела, постепенно будет уменьшаться количество кислорода и увеличиваться количество углекислоты. Однако прекращение доступа кислорода в легкие собаки I не сопровождается усилением ее дыхательных движений, напротив, они вскоре ослабляются, зато у собаки II начинается очень сильная одышка.

Поскольку нервная связь между обеими собаками отсутствует, ясно, что раздражающее действие недостатка кислорода и избытка углекислоты передается от тела собаки I к голове собаки II посредством тока крови, т. е. гуморальным путем . Кровь собаки I, перегруженная углекислотой и бедная кислородом, поступая в голову собаки II, вызывает возбуждение ее дыхательного центра. Вследствие этого у собаки II и возникает одышка, т.е. усиление вентиляции легких. Вместе с тем гипервентиляция приводит к уменьшению (ниже нормы) содержания углекислого газа в крови собаки II. Эта обедненная углекислотой кровь поступает в голову собаки I ивызывает ослабление работы ее дыхательного центра, несмотря на то, что все ткани этой собаки, за исключением тканей головы, страдают от тяжелой гиперкапнии (избытка СО 2) и гипоксии (недостаток О 2), обусловленных прекращением доступа воздуха в ее легкие.

I

Рис.20. Опыт с перекрестным кровообращением

Закон Белла-Мажанди – в спинной мозг афферентные нервные волокна вступают в составе задних (дорсальных) корешков, а эфферентные выходят из спинного мозга в составе передних (вентральных) корешков.

Закон градиента автоматии Гаскелла – степень автоматии тем выше, чем ближе расположен участок проводящей системы к синоатриальному узлу (синоатриальный узел 60-80имп/мин., атриовентрикулярный – 40-50имп/мин., пучок Гиса – 30-40имп/мин., волокна Пуркинье – 20имп/мин.).

Закон поверхности тела Рубнера – энергетические затраты теплокровного организма пропорциональны площади поверхности тела.

Закон сердца Франка-Старлинга (закон зависимости энергии сокращения миокарда от степени растяжения составляющих его мышечных волокон) – чем сильнее растянута мышца сердца во время диастолы, тем она сильнее сокращается во время систолы. Следовательно, сила сердечных сокращений зависит от исходной длины мышечных волокон перед началом их сокращения.

Теория трехкомпонентного цветного зрения Ломоносова-Юнга-Гельмгольца – в сетчатке позвоночных находятся три типа колбочек, каждый из которых содержит особое цветореактивное вещество. Благодаря содержанию различных цветореактивных веществ одни колбочки обладают повышенной возбудимостью к красному, другие – к зеленому, третьи – к сине-фиолетовому цвету.

Теория круговых активационных токов Гейманса (теория распространения возбуждения по нервам) – при проведении нервного импульса каждая точка мембраны генерирует потенциал действия заново, и таким образом волна возбуждения «пробегает» по всему нервному волокну.

Рефлекс Бейнбриджа – при увеличении давления в устьях полых вен увеличивается частота и сила сердечных сокращений.

Рефлекс Геринга – рефлекторное снижение ЧСС при задержке дыхания на высоте глубокого вдоха.

Рефлекс Гольца – уменьшение частоты сердечных сокращений или даже полная остановка сердца при раздражении механорецепторов органов брюшной полости или брюшины.

Рефлекс Данини-Ашнера (глазосердечный рефлекс) уменьшение частоты сердечных сокращений при надавливании на глазные яблоки.

Рефлекс Парина – при повышении давления в сосудах малого круга кровообращения происходит торможение сердечной деятельности.

Принцип Дейла – один нейрон синтезирует и использует один и тот же медиатор или одни и те же медиаторы во всех разветвлениях своего аксона (кроме основного медиатора, как выяснилось позже, в окончаниях аксона могут выделяться и другие, сопутствующие медиаторы, играющие модулирующую роль – АТФ, пептиды и др.).

Принцип М.М.Завадского («плюс-минус» взаимодействия) – повышение содержания гормона в крови приводит к торможению ее секреции железой, а недостаток к стимуляции выделения гормона.

Лестница Боудича (1871) – если раздражать мышцу импульсами возрастающей частоты, не меняя их силы, величина сократительного ответа миокарда будет возрастать на каждый последующий стимул (но до определенного предела). Внешне это напоминает лестницу, поэтому явление получило название лестницы Боудича (при увеличении частоты раздражения сила сердечных сокращений увеличивается).

Феномен Орбели-Гинецинского. Если стимуляцией двигательного нерва довести мышцу лягушки до утомления, а затем одновременно раздражать симпатический ствол, то работоспособность утомленной мышцы повышается. Сама по себе стимуляция симпатических волокон не вызывает сокращения мышцы, но изменяет состояние мышечной ткани, повышает её восприимчивость к передаваемым по соматическим волокнам импульсам.

Эффект Анрепа (1972) заключается в том, что при повышении давления в аорте или легочном стволе сила сердечных сокращений автоматически возрастает, обеспечивая тем самым возможность выброса такого же объема крови, как и при исходной величине артериального давления в аорте или легочной артерии, т.е. чем больше противонагрузка, тем больше сила сокращения, а в итоге обеспечивается постоянство систолического объема.

ЛИТЕРАТУРА

1. Заянчковский И.Ф. Животные – помощники ученых. Научно-популярные очерки. –Уфа: Баш.кн.изд-во, 1985.

2. История биологии. С древнейших времен до начала XX века /под ред. С.Р.Микулинского. –М.: Наука, 1972.

3. Ковалевский К.Л. Лабораторные животные. –М.: Изд-во Академии Медицинских наук СССР, 1951.

4. Лалаянц И.Э., Милованова Л.С. Нобелевские премии по медицине и физиологии /Новые в жизни, науке, технике. Сер. «Биология», №4. –М.: Знание, 1991.

5. Леванов Ю.М. Грани гениальности //Биология в школе. 1995. №5. – С.16.

6. Леванов Ю.М., Андрей Везалий //Биология в школе. 1995. № 6. – С.18.

7. Мартьянова А.А., Тарасова О.А. Три эпизода из истории физиологии. //Биология для школьников. 2004. № 4. – С.17-23.

8. Самойлов А.Ф. Избранные труды. –М.: Наука, 1967.

9. Тимошенко А.П. О клятве Гиппократа, эмблеме медицины и о многом другом //Биология в школе. 1993. № 4. – С.68-70.

10. Уоллэйс Р. Мир Леонардо /пер. с англ. М.Карасевой. –М.: ТЕРРА, 1997.

11. Физиология человека и животных /под ред. А.Д.Ноздрачева. Кн.1. –М.: Высшая школа, 1991.

12. Физиология человека: в 2т. /под ред. Б.И.Ткаченко. Т.2. –СПб.: Изд-во Международный фонд развития науки, 1994.

13. Эккерт Р. Физиология животных. Механизмы и адаптация: в 2т. –М.: Мир, 1991.

14. Энциклопедия для детей. Т.2. –М.: Изд-во «Аванта +», 199

ПРЕДИСЛОВИЕ …………………………………………………...
КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ФИЗИОЛОГИИ ……………
ЗНАЧЕНИЕ ЛАБОРАТОРНЫХ ЖИВОТНЫХ В РАЗВИТИИ ФИЗИОЛОГИИ …………………………………….
ПЕРСОНАЛИИ …………………………………………………….
Авиценна ………………………………………………….
Анохин П.К. ………………………………………………
Бантинг Ф. ………………………………………………...
Бернар К. ………………………………………………….
Везалий А. ………………………………………………...
Леонардо да Винчи ……………………………………….
Вольта А. ………………………………………………….
Гален К. …………………………………………………...
Гальвани Л. ………………………………………………..
Гарвей У. ………………………………………………….
Гельмгольц Г. …………………………………………….
Гиппократ …………………………………………………
Декарт Р. ………………………………………………….
Дюбуа-Реймон Э. …………………………………………
Ковалевский Н.О. ………………………………………...
Ломоносов М.В. ………………………………………….
Миславский Н.А. …………………………………………
Овсянников Ф.В. ………………………………………….
Павлов И.П. ……………………………………………….
Самойлов А.Ф. ……………………………………………
Селье Г. ……………………………………………………
Сеченов И.М………………………………………………
Ухтомский А.А. ………………………………………….
Шеррингтон Ч.С. …………………………………………
НОБЕЛЕВСКИЕ ЛАУРЕАТЫ В ОБЛАСТИ МЕДИЦИНЫ И ФИЗИОЛОГИИ …………………………………………………….
АВТОРСКИЕ ОПЫТЫ, ЗАКОНЫ, РЕФЛЕКСЫ ………………..
ЛИТЕРАТУРА ……………………………………………………...

Так уж получилось, что читать люди в массе своей не любят . Там более, если читать трудно, например на иностранном языке, который каждый второй со школы не знал, а потом еще и основательно забыл. Этим фактом вовсю пользуются современные коммерсанты, выпускающие на рынок чудесные брошюрки типа "Анна Каренина на 5 страницах".

Есть в виноделии и винопотреблении множество очень интересных и действительно богатых тем для размышления, например о том, насколько может быть объективно восприятие вина тем или иным человеком. О том, насколько в реальности человек ощущает и переживает какие-то эмоции при дегустации вина, а в какой степени он их себе домысливает. Это прекрасные вопросы, которые заслуживают серьезных размышлений и дискуссий. Но вот беда - для серьезного уровня обсуждения любого вопроса, в том числе и этого, требуется предварительно потратить значительное число часов на его осмысление в различных аспектах и изучение всех существующих работ, сделанных ранее на эту тему.

А это большой труд, который требует, в первую очередь, навыка серьезного аналитического чтения. К которому, как я упомянул выше, люди в массе не способны. Поэтому придется и мне сегодня поупражняться в переложении "теории дифференциальных уравнений в частных производных для дошкольного чтения".

Речь пойдет об эксперименте (точнее о первой части эксперимента) Фредерика Броше , которые с подачи охочих до "желтого" и "жареного" бульварных журналистов обрел широкую известность как "обман дегустаторов". Суть эксперимента состояла в том, что автор его взял белое вино, разлил его в две емкости и одну из емкостей подкрасил безвкусным пищевым красным красителем. После чего попросил своих испытуемых, которых набрал "по объявлению" в университетском кампусе, описать вкус и аромат каждого вина.

В итоге - те испытуемые студенты, кто пробовал "белое" вино говорили о его аромате используя ассоциации с белыми фруктами и цветами, упоминая ландыши, персики, дыню и т.д., а те испытуемые, которые пробовали "красное" вино, говорили о розах, землянике и яблоках. Ничего общего! Ура! Дегустаторы все врут и на самом деле ничего не понимают, мы вывели их на чистую воду! Всеобщее торжество и ликование!

Казалось бы. На самом же деле ситуация проста и банальна: никого из нас никогда не учили описывать вкус и аромат на словах. Никого и ни в одной стране мира. Также как и цвет. Или звук. Попробуйте расказать, на что похож синий цвет и вы столкнетесь с большой проблемой, состоящей в том, что фраза "излучение с длиной волны около 440-485 нм" не говорит вообще ничего и никому. Это на самом деле простой эксперимент, доступный каждому. Встаньте с кресла и подойдите к 10-20 людям с вопросом "на что похож синий цвет?". И человек, недавно побывавший на море, первым делом скажет "на море ", любитель авиации - "на небо ", ботаник - "на васильки ", геолог - "на лазурит и сапфир " и так далее. Ничего общего! Значит ли это, что люди, на самом деле, не различают цветов?

Пытаясь рассказать другому человеку о тех ощущениях (в случае с цветами - зрительных), для которых нет устоявшихся единых мерок, мы призываем на помощь ассоциации , стараясь подобрать что-то наиболее близкое, наиболее похожее и наиболее знакомое всем. Ассоциации, мысленные образы, идеи. Не более того.

Влияет ли цвет предмета на то, какие ассоциации нам придут в голову? Безусловно! В иллюстрации к этому тексту стоит картинка с двумя образами скорости, которые художники воплотили в раскраске машин. Что общего между снежной бурей и стремительным лесным пожаром? Одно белое, холодное, колючее, пронизывающее, вымораживающее. Другое - безжалостно палящее, напористое, оставляющее после себя гарь, дым и пепел. Но значит ли это, что на самом деле "никакой скорости нет!"? Нет конечно! Она прекрасно есть. Повлиял ли изначальный цвет машины на выбор метафоры, ассоциации, идеи для картины? Безусловно! Есть ли в этом какая-то сенсация? Ни на грош.

Но кого это интересует?

Регуляция дыхания - это согласованное нервное управление дыхательными мышцами, последовательно осуществляющими дыхательные циклы, состоящие из вдоха и выдоха.

Дыхательный центр - это сложное многоуровневое структурно-функциональное образование мозга, осуществляющее автоматическую и произвольную регуляцию дыхания.

Дыхание - процесс автоматический, но он поддается произвольной регуляции. Без такой регуляции невозможна была бы речь. Вместе с тем, управление дыханием построено на рефлекторных принципах: как безусловно-рефлекторных, так и условно-рефлекторных.

Регуляция дыхания построена на общих принципах автоматической регуляции, которые используются в организме.

Пейсмейкерные нейроны (нейроны - "создатели ритма") обеспечивают автоматическое возникновение возбуждения в дыхательном центре даже в том случае, если не будут раздражаться дыхательные рецепторы.

Тормозные нейроны обеспечивают автоматическое подавление этого возбуждения через определённое время.

В дыхательном центре используется принцип реципрокного (т.е. взаимоисключающего) взаимодействия двух центров: вдоха и выдоха . Их возбуждение находится в обратно пропорциональной зависимости. Это означает, что возбуждение одного центра (например, центра вдоха) тормозит связанный с ним второй центр (центр выдоха).

Функции дыхательного центра
- Обеспечение вдоха.
- Обеспечение выдоха.
- Обеспечение автоматии дыхания.
- Обеспечение приспособления параметров дыхания к условиям внешней среды и деятельности организма.
Например, при повышении температуры (как в окружающей среде, так и в организме) дыхание учащается.

Уровни дыхательного центра

1. Спинальный (в спинном мозге). В спинном мозге расположены центры, координирующие деятельность диафрагмы и дыхательных мышц - L-мотонейроны в передних рогах спинного мозга. Диафрагмальные нейроны - в шейных сегментах, межреберные - в грудных. При перерезке проводящих путей между спинным и головным мозгом дыхание нарушается, т.к. спинальные центры не обладают автономностью (т.е. самостоятельностью) и не поддерживают автоматию дыхания.

2. Бульбарный (в продолговатом мозге) - основной отдел дыхательного центра. В продолговатом мозге и варолиевом мосту располагаются 2 основных вида нейронов дыхательного центра - инспираторные (вдыхательные) и экспираторные (выдыхательные).

Инспираторные (вдыхательные) - возбуждаются за 0,01-0,02 с до начала активного вдоха. Во время вдоха у них увеличивается частота импульсов, а затем мгновенно прекращается. Подразделяются на несколько видов.

Виды инспираторных нейронов

По влиянию на другие нейроны:
- тормозные (прекращают вдох)
- облегчающие (стимулируют вдох).
По времени возбуждения:
- ранние (за несколько сотых долей секунды до вдоха)
- поздние (активны в процессе всего вдоха).
По связям с экспираторными нейронами:
- в бульбарном дыхательном центре
- в ретикулярной формации продолговатого мозга.
В дорсальном ядре 95% - инспираторные нейроны, в вентральном - 50%. Нейроны дорсального ядра связаны с диафрагмой, а вентрального - с межрёберными мышцами.

Экспираторные (выдыхательные) - возбуждение возникает за несколько сотых долей секунды до начала выдоха.

Различают:
- ранние,
- поздние,
- экспираторно-инспираторные.
В дорсальном ядре 5% нейронов являются экспираторными, а в вентральном - 50%. В целом экспираторных нейронов значительно меньше, чем инспираторных. Получается, что вдох важнее выдоха.

Автоматию дыхания обеспечивают комплексы из 4-х нейронов с обязательным присутствием тормозных.

Взаимодействие с другими центрами мозга

Дыхательные инспираторные и экспираторные нейроны имеют выход не только на дыхательные мышцы, но и на другие ядра продолговатого мозга. Например, при возбуждении дыхательного центра реципрокно тормозится центр глотания и в то же время, наоборот, возбуждается сосудо-двигательный центр регуляции сердечной деятельности.

На бульбарном уровне (т.е. в продолговатом мозге) можно выделить пневмотаксический центр , расположенный на уровне варолиева моста, выше инспираторных и экспираторных нейронов. Этот центр регулирует их активность и обеспечивает смену вдоха и выдоха . Инспираторные нейроны обеспечивают вдох и одновременно от них возбуждение поступает в пневмотаксический центр. Оттуда возбуждение бежит к экспираторным нейронам, которые возбуждаются и обеспечивают выдох. Если перерезать пути между продолговатым мозгом и варолиевым мостом, то уменьшится частота дыхательных движений, засчёт того, что уменьшается активирующее действие ПТДЦ (пневмотаксического дыхательного центра) на инспираторные и экспираторные нейроны. Это также приводит к удлинению вдоха засчёт длительного сохранения тормозного влияния экспираторных нейронов на инспираторные.

3. Супрапонтиальный (т.е. "надмостовый") - включает в себя несколько областей промежуточного мозга:
Гипоталамическая область - при раздражении вызывает гиперпноэ - увеличение частоты дыхательных движений и глубины дыхания. Задняя группа ядер гипоталамуса вызывает гиперпноэ, передняя группа действует противоположным образом. Именно засчёт дыхательного центра гипоталамуса дыхание реагирует на температуру окружающей среды.
Гипоталамус совместно с таламусом обеспечивает изменение дыхания при эмоциональных реакциях .
Таламус - обеспечивает изменение дыхания при болевых ощущениях.
Мозжечок - приспосабливает дыхание к мышечной активности.

4. Моторная и премоторная зона коры больших полушарий головного мозга. Обеспечивает условно-рефлекторную регуляцию дыхания. Всего за 10-15 сочетаний можно выработать дыхательный условный рефлекс. Засчёт этого механизма, например, у спортсменов перед стартом возникает гиперпноэ.
Асратян Э.А. в своих опытах удалял у животных эти области коры. При физической нагрузке у них быстро возникала одышка - диспноэ, т.к. им не хватало этого уровня регуляции дыхания.
Дыхательные центры коры дают возможность произвольного изменения дыхания.

Регуляция деятельности дыхательного центра
Бульбарный отдел дыхательного центра является главным, он обеспечивает автоматию дыхания, но его деятельность может изменяться под действием гуморальных и рефлекторных влияний.

Гуморальные влияния на дыхательный центр
Опыт Фредерика (1890). Он сделал перекрестное кровообращение у двух собак - голова каждой собаки получила кровь от туловища другой собаки. У одной собаки зажимали трахею, следовательно, возрастал уровень углекислого газа и понижался уровень кислорода в крови. После этого другая собака начинала часто дышать. Возникало гиперпноэ. В следствие этого в крови уменьшался уровень СО2 и возрастал уровень О2. Эта кровь поступала к голове первой собаки и тормозила ее дыхательный центр. Гуморальное торможение дыхательного центра могло довести эту первую собаку до апноэ, т.е. остановки дыхания.
Факторы, гуморально влияющие на дыхательный центр:
Избыток СО2 - гиперкарбия, вызывает активацию дыхательного центра.
Недостаток О2 - гипоксилия, вызывает активацию дыхательного центра.
Ацидоз - накопление ионов водорода (закисление), активирует дыхательный центр.
Недостаток СО2 - торможение дыхательного центра.
Избыток О2 - торможение дыхательного центра.
Алколоз - +++торможение дыхательного центра
Сами нейроны продолговатого мозга засчет высокой активности вырабатывают много СО2 и локально воздействуют на самих себя. Положительная обратная связь (сами себя усиливают).
Кроме прямого действия СО2 на нейроны продолговатого мозга существует рефлекторное действие через рефлексогенные зоны сердечно-сосудистой системы (рефлексы Рейманса). При гиперкарбии возбуждаются хеморецепторы и от них возбуждение поступает к хемочувствительным нейронам ретикулярной формации и к хемочувствительным нейронам коры головного мозга.
Рефлекторное влияние на дыхательный центр.
1. Постоянное влияние.
Рефлекс Гелинга-Брейера. Механорецепторы в тканях легких и дыхательных путей возбуждаются при растяжении и спадении легких. Они чувствительны к растяжению. От них импульсы по вакусу (блуждающий нерв) идет в продолговатый мозг к инспираторным L-мотонейронам. Вдох прекращается и начинается пассивный выдох. Этот рефлекс обеспечивает смену вдоха и выдоха и поддерживает активность нейронов дыхательного центра.
При перегрузке вакуса и перерезке рефлекс отменяется: снижается частота дыхательных движений, смена вдоха и выдоха осуществляется резко.
Другие рефлексы:
растяжение легочной ткани тормозит последующий вдох (экспираторно-облегчающий рефлекс).
Растяжение легочной ткани при вдохе сверх нормального уровня вызывает дополнительный вздох (парадоксальный рефлекс Хеда).
Рефлекс Гейманса - возникает от хеморецепторов сердечно-сосудистой системы на концентрацию СО2 и О2.
Рефлекторное влияние с пропреорецепторов дыхательных мышц - при сокращении дыхательных мышц возникает поток импульсов от пропреорецепторов к ЦНС. По принципу обратной связи изменяется активность инспираторных и экспираторных нейронов. При недостаточном сокращении инспираторных мышц возникает респираторно-облегчающий эффект и вдох усиливается.
2. Непостоянные
Ирритантные - расположены в дыхательных путях под эпителием. Являются одновременно механо- и хеморецепторами. Имеют очень высокий порог раздражения, поэтому работают в экстраординарных случаях. Например, при понижении легочной вентиляции объем легких уменьшается, возбуждаются ирритантные рецепторы и вызывают рефлекс форсированного вдоха. В качестве хеморецепторов эти же рецепторы возбуждаются биологически активными веществами - никотин, гистамин, простогландин. Возникает чувство жжения, першения и в ответ - защитный кашлевой рефлекс. В случае патологии ирритантные рецепторы могут вызвать спазм дыхательных путей.
в альвеолах рецепторы юкста-альвеолярные и юкста-капиллярные реагируют на объем легких и биологически активные вещества в капиллярах. Повышают частоту дыхания и сокращают бронхи.
На слизистых оболочках дыхательных путей - экстерорецепторы. Кашель, чихание, задержка дыхания.
На коже - тепловые и холодовые рецепторы. Задержка дыхания и активация дыхания.
Болевые рецепторы - кратковременная задержка дыхания, затем усиление.
Энтерорецепторы - с желудка.
Пропреорецепторы - со скелетных мышц.
Механорецепторы - с сердечно-сосудистой системы.



Включайся в дискуссию
Читайте также
Как правильно делать укол собаке
Шарапово, сортировочный центр: где это, описание, функции
Надежность - степень согласованности результатов, получаемых при многократном применении методики измерения